C++ 整数拆分方法详解

时间:2021-05-02

一、问题背景

  整数拆分,指把一个整数分解成若干个整数的和

  如 3=2+1=1+1+1 共2种拆分

  我们认为2+1与1+2为同一种拆分

二、定义

  在整数n的拆分中,最大的拆分数为m,我们记它的方案数为 f(n,m)

  即 n=x1+x2+······+xk-1+xk ,任意 x≤m

  在此我们采用递归递推法

三、递推关系

  1、n=1或m=1时 

    拆分方案仅为 n=1 或 n=1+1+1+······

     f(n,m)=1

  2、n=m时

     S1选取m时,f(n,m)=1,即n=m

     S2不选取m时,f(n,m)=f(n,m-1)=f(n,n-1),此时讨论最大拆分数为m-1时的情况

    可归纳 f(n,m)=f(n,n-1)+1

  3、n<m时

     因为不能选取m,所以可将m看作n,进行n=m时的方案,f(n,m)=f(n,n)

  4、n>m时

     S1选取m时,f(n,m)=f(n-m,m),被拆分数因选取了m则变为n-m,且n-m中可能还能选取最大为m的数

     S2不选取m时,f(n,m)=f(n,m-1),此时讨论最大拆分数为m-1时的情况

     可归纳 f(n,m)=f(n,m-1)+f(n-m,m)

总递推式为

代码如下

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 #include <algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <cmath> using namespace std; int f(int n,int m) { if ((n!=1)&&(m!=1)) { if (n>m) return f(n-m,m)+f(n,m-1); else return 1+f(n,n-1); } else return 1; } void work() { int n,m; cin>>n>>m; cout<<f(n,m); } int main() { freopen("cut.in","r",stdin); freopen("cut.out","w",stdout); work(); return 0; }

以上所述是小编给大家介绍的C++ 整数拆分方法详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章