时间:2021-05-19
本文实例讲述了Java实现二叉树的建立、计算高度与递归输出操作。分享给大家供大家参考,具体如下:
1. 建立 递归输出 计算高度 前中后三种非递归输出
public class Tree_Link { private int save = 0; private int now = 0; Scanner sc = new Scanner(System.in); /* * 构造函数 */ Tree_Link(){ } /* * 链表建立 */ public Tree Link_Build(Tree head){// Tree head = new Tree();//头节点 System.out.println("继续code:1"); int flag = sc.nextInt(); if(flag != 1){ return head; }else{ System.out.println("\n\n\n输入 节点信息:"); head.SetCode(sc.nextInt()); System.out.println("\n建立 左 子树code:1 否则:0"); flag = sc.nextInt(); if(flag == 1){ now++; Tree LTree = new Tree(); head.SetLtree(LTree); LTree.SetFronttree(head);//设置父母节点 Link_Build( head.GetLtree() ); } System.out.println("\n当前位置:" + head.GetCode()); System.out.println("\n建立 右 子树code:1 否则:0"); flag = sc.nextInt(); if(flag == 1){ now++; Tree Rtree = new Tree(); head.SetRtree(Rtree); Rtree.SetFronttree(head);//设置父母节点 Link_Build( head.GetRtree() ); } if( now > save ){ save = now; } now--; } return head; } /* * 输出树 */ public Tree output(Tree head){ int flag; if(head.GetCode() == -1){ return head; }else{ System.out.println("\n当前位置:" + head.GetCode()); System.out.println(head.GetLtree() != null); if(head.GetLtree() != null){ System.out.println("\n访问 左子树:"); output( head.GetLtree() ); } if(head.GetRtree() != null){ System.out.println("\n访问 右子树:"); output( head.GetRtree() ); } } return head; } /* * 获得高度 */ public int GetSave(){ return this.save; } /* * 非递归 前序遍历 */ public void Front_Traverse(Tree head){ Tree star = head;//退出标记 int choose = 1; //左 int flag = 1; //右 System.out.println( "<---前序遍历--->" + head.GetCode() );//先访问根 while(true){ if( head.GetLtree() != null && choose != 0 ){ head = head.GetLtree(); System.out.println( "<---前序遍历--->" + head.GetCode() );//获得信息 flag = 1; }else if( head.GetRtree() != null && flag != 0 ){ head = head.GetRtree(); System.out.println( "<---前序遍历--->" + head.GetCode() ); choose = 1; }else if( flag == 0 && choose == 0 && head == star){ break; }else{ if(head == head.GetFronttree().GetRtree()){ flag = 0; choose = 0; } if(head == head.GetFronttree().GetLtree()){ choose = 0; flag = 1; } head = head.GetFronttree(); System.out.println("获得 父母" + head.GetCode()); System.out.println( "\n\n\n" ); } } } /* * 非递归 中序遍历 */ public void Center_Traverse(Tree head){ Tree star = head;//退出标记 int choose = 1; //左 int flag = 1; //右 while(true){ if( head.GetLtree() != null && choose != 0 ){ head = head.GetLtree(); flag = 1; }else if( head.GetRtree() != null && flag != 0 ){ if(head.GetLtree() == null){//因为左边为空而返回 System.out.println( "<-1--中序遍历--->" + head.GetCode()); } head = head.GetRtree(); choose = 1; }else if( flag == 0 && choose == 0 && head == star){ break; }else{ int area = 0;//判断哪边回来 flag = 1; choose = 1; if(head == head.GetFronttree().GetRtree()){ area = 1;//右边回来 flag = 0; choose = 0; } if(head == head.GetFronttree().GetLtree()){ area = 2;//左边回来 choose = 0; flag = 1; } if( head.GetLtree() == null && head.GetRtree() == null ){//因为左边为空而返回 System.out.println( "<-2--中序遍历--->" + head.GetCode()); } head = head.GetFronttree(); if( area == 2){//因为左边访问完返回 System.out.println( "<-3--中序遍历--->" + head.GetCode()); } System.out.println("获得 父母" + head.GetCode()); System.out.println( "\n\n\n" ); } } } /* * 非递归 后续遍历 */ public void Bottom_Traverse(Tree head){ Tree star = head;//退出标记 int choose = 1; //左 int flag = 1; //右 while(true){ if( head.GetLtree() != null && choose != 0 ){ head = head.GetLtree(); flag = 1; }else if( head.GetRtree() != null && flag != 0 ){ head = head.GetRtree(); choose = 1; }else if( flag == 0 && choose == 0 && head == star){ break; }else{ int area = 0;//判断哪边回来 flag = 1; choose = 1; if(head == head.GetFronttree().GetRtree()){ area = 1;//右边回来 flag = 0; choose = 0; } if(head == head.GetFronttree().GetLtree()){ choose = 0; flag = 1; } if(head.GetRtree() == null){//因为右边为空而返回 System.out.println( "<-1--后序遍历--->" + head.GetCode()); } head = head.GetFronttree(); if( area == 1){ System.out.println( "<-2--后序遍历--->" + head.GetCode()); } System.out.println("获得 父母" + head.GetCode()); System.out.println( "\n\n\n" ); } } }}2. Tree 类实现:
public class Tree { private int code = -1; private Tree Fonttree; private Tree Ltree; private Tree Rtree; Tree(){ this.code = -1; this.Ltree = null; this.Rtree = null; } /* * 树内容查看方法: */ public void SetCode(int code){//设置编号 this.code = code; } public int GetCode(){ //获取编号 return this.code; } /* * 设置父母指针: */ public void SetFronttree(Tree Front){ this.Fonttree = Front; } public Tree GetFronttree(){ System.out.println("获得 父母"); return this.Fonttree; } /* * 设置左子女: */ public void SetLtree(Tree Ltree){ this.Ltree = Ltree; } public Tree GetLtree(){ System.out.println("获得左子树"); return this.Ltree; } /* * 设置右子女: */ public void SetRtree(Tree Rtree){ this.Rtree = Rtree; } public Tree GetRtree(){ System.out.println("获得右子树"); return this.Rtree; }}3. 主函数测试:
public class MainActivity { Scanner sc = new Scanner(System.in); public static void main(String[] args) { Tree head = new Tree(); Tree_Link link_1st = new Tree_Link(); head = link_1st.Link_Build(head); System.out.println("Build succeed !"); System.out.println("\n二叉树高度-->" + link_1st.GetSave()); link_1st.output(head); System.out.println("Output Over !"); System.out.println("\n\n<----------------前------------------>\n前序访问根:"); link_1st.Front_Traverse(head); System.out.println("\n\n<----------------中------------------>\n中序访问根:"); link_1st.Center_Traverse(head); System.out.println("\n\n<----------------后------------------>\n后序访问根:"); link_1st.Bottom_Traverse(head); System.out.println("\n\n\n\nText over !\n\n\n"); }}更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》
希望本文所述对大家java程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Java二叉树排序算法排序二叉树的描述也是一个递归的描述,所以排序二叉树的构造自然也用递归的:排序二叉树的3个特征:1:当前node的所有左孩子的值都小于当前n
本文实例讲述了PHP获取二叉树镜像的方法。分享给大家供大家参考,具体如下:问题操作给定的二叉树,将其变换为源二叉树的镜像。解决思路翻转二叉树,有递归和非递归两种
什么是二叉树,这里不再介绍,可以自行百度:二叉树。在这里利用java实现“表达式二叉树”。表达式二叉树的定义第一步先要搞懂表达式二叉树是个什么东东?举个栗子,表
本文实例讲述了PHP基于非递归算法实现先序、中序及后序遍历二叉树操作。分享给大家供大家参考,具体如下:概述:二叉树遍历原理如下:针对上图所示二叉树遍历:1.前序
C++数据结构二叉树(前序/中序/后序递归、非递归遍历)二叉树的性质:二叉树是一棵特殊的树,二叉树每个节点最多有两个孩子结点,分别称为左孩子和右孩子。例:实例代