详解Java 信号量Semaphore

时间:2021-05-19

  Semaphore也是一个同步器,和前面两篇说的CountDownLatch和CyclicBarrier不同,这是递增的,初始化的时候可以指定一个值,但是不需要知道需要同步的线程个数,只需要在同步的地方调用acquire方法时指定需要同步的线程个数;

一.简单使用

  同步两个子线程,只有其中两个子线程执行完毕,主线程才会执行:

package com.example.demo.study;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;public class Study0217 { //创建一个信号量的实例,信号量初始值为0 static Semaphore semaphore = new Semaphore(0); public static void main(String[] args) throws Exception { ExecutorService pool = Executors.newFixedThreadPool(3); pool.submit(()->{ System.out.println("Thread1---start"); //信号量加一 semaphore.release(); }); pool.submit(()->{ System.out.println("Thread2---start"); //信号量加一 semaphore.release(); }); pool.submit(()->{ System.out.println("Thread3---start"); //信号量加一 semaphore.release(); }); //等待两个子线程执行完毕就放过,必须要信号量等于2才放过 semaphore.acquire(2); System.out.println("两个子线程执行完毕"); //关闭线程池,正在执行的任务继续执行 pool.shutdown(); }}

这个信号量也可以复用,类似CyclicBarrier:

package com.example.demo.study;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;public class Study0217 { //创建一个信号量的实例,信号量初始值为0 static Semaphore semaphore = new Semaphore(0); public static void main(String[] args) throws Exception { ExecutorService pool = Executors.newFixedThreadPool(3); pool.submit(()->{ System.out.println("Thread1---start"); //信号量加一 semaphore.release(); }); pool.submit(()->{ System.out.println("Thread2---start"); //信号量加一 semaphore.release(); }); //等待两个子线程执行完毕就放过,必须要信号量等于2才放过 semaphore.acquire(2); System.out.println("子线程1,2执行完毕"); pool.submit(()->{ System.out.println("Thread3---start"); //信号量加一 semaphore.release(); }); pool.submit(()->{ System.out.println("Thread4---start"); //信号量加一 semaphore.release(); }); semaphore.acquire(2); System.out.println("子线程3,4执行完毕"); //关闭线程池,正在执行的任务继续执行 pool.shutdown(); }}

二.信号量原理 

  看看下面这个图,可以知道信号量Semaphore还是根据AQS实现的,内部有个Sync工具类操作AQS,还分为公平策略和非公平策略;

构造器:

//默认是非公平策略public Semaphore(int permits) { sync = new NonfairSync(permits);}//可以根据第二个参数选择是公平策略还是非公平策略public Semaphore(int permits, boolean fair) { sync = fair ? new FairSync(permits) : new NonfairSync(permits);}

acquire(int permits)方法:

public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); sync.acquireSharedInterruptibly(permits);}//AQS中的方法public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); //这里根据子类是公平策略还是非公平策略 if (tryAcquireShared(arg) < 0) //获取失败会进入这里,将线程放入阻塞队列,然后再尝试,还是失败的话就调用park方法挂起当前线程 doAcquireSharedInterruptibly(arg);}//非公平策略protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires);}final int nonfairTryAcquireShared(int acquires) { //一个无限循环,获取state剩余的信号量,因为每调用一次release()方法的话,信号量就会加一,这里将 //最新的信号量减去传进来的参数比较,比如有两个线程,其中一个线程已经调用了release方法,然后调用acquire(2)方法,那么 //这里remaining的值就是-1,返回-1,然后当前线程就会被丢到阻塞队列中去了;如果另外一个线程也调用了release方法, //那么此时的remaining==0,所以在这里的if中会调用CAS将0设置到state // for (;;) { int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; }}//公平策略//和上面非公平差不多,只不过这里会查看阻塞队列中当前节点前面有没有前驱节点,有的话直接返回-1,//就会把当前线程丢到阻塞队列中阻塞去了,没有前驱节点的话,就跟非公平模式一样的了protected int tryAcquireShared(int acquires) { for (;;) { if (hasQueuedPredecessors()) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 ||compareAndSetState(available, remaining)) return remaining; }}

再看看release(int permits)方法:

//这个方法的作用就是将信号量加一public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.releaseShared(permits);}//AQS中方法public final boolean releaseShared(int arg) { //tryReleaseShared尝试释放资源 if (tryReleaseShared(arg)) { //释放资源成功就调用park方法唤醒唤醒AQS队列中最前面的节点中的线程 doReleaseShared(); return true; } return false;}protected final boolean tryReleaseShared(int releases) { //一个无限循环,获取state,然后加上传进去的参数,如果新的state的值小于旧的state,说明已经超过了state的最大值,溢出了 //没有溢出的话,就用CAS更新state的值 for (;;) { int current = getState(); int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); if (compareAndSetState(current, next)) return true; }}private void doReleaseShared() { for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; //ws==Node.SIGNAL表示节点中线程需要被唤醒 if (ws == Node.SIGNAL) { if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases //调用阻塞队列中线程的unpark方法唤醒线程 unparkSuccessor(h); } //ws == 0表示节点中线程是初始状态 else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; }}

  以最上面的例子简单说一下,其实不是很难,首先线程1和线程2分别去调用release方法,这个方法里面会将AQS中的state加一,但是在执行这个操作之前,主线程肯定会先到acquire(2),在这个方法里面,假如默认使用非公平策略,首先获取当前的信号量state(state的初始值是0),用当前信号量减去2,如果小于0,那么当前主线程就会丢到AQS队列中阻塞;

  这个时候线程1的release方法执行了,于是就把信号量state加一(此时state==1),CAS更新state为一,成功的话,就调用doReleaseShared()方法唤醒AQS阻塞队列中最先挂起的线程(这里就是因为调用acquire方法而阻塞的主线程),主线程唤醒之后又会去获取最新的信号量,与2比较,发现还是小于0,于是又会阻塞;

  线程2此时的release方法执行完成,重复线程一的操作,主线程唤醒之后(此时state==2),又去获取最新的信号量发现是2,减去acquire方法的参数2等于0,于是就用CAS更新state的值,然后acquire方法也就执行完毕,主线程继续执行后面的代码;

  其实信号量还是很有意思的,记得在项目里,有人利用信号量实现了一个故障隔离,什么时候我可以把整理之后的代码贴出来分享一下,还是很有意思的,就跟springcloud的熔断机制差不多,场景是:比如你在service的一个方法调用第三方的接口,你不知道调不调得通,而且你不希望每次前端过来都会去调用,比如当调用失败的次数超过100次,那么五分钟之后才会再去实际调用这个第三方服务!这五分钟内前调用这个服务,就会触发我们这个故障隔离的机制,向前端返回一个特定的错误码和错误信息!

以上就是详解Java 信号量Semaphore的详细内容,更多关于Java 信号量Semaphore的资料请关注其它相关文章!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章