时间:2021-05-19
开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。
API网关作为所有请求的入口,请求量大,我们可以通过对并发访问的请求进行限速来保护系统的可用性。
常用的限流算法比如有令牌桶算法,漏桶算法,计数器算法等。
在Zuul中我们可以自己去实现限流的功能 (Zuul中如何限流在我的书 《Spring Cloud微服务-全栈技术与案例解析》 中有详细讲解) ,Spring Cloud Gateway的出现本身就是用来替代Zuul的。
要想替代那肯定得有强大的功能,除了性能上的优势之外,Spring Cloud Gateway还提供了很多新功能,比如今天我们要讲的限流操作,使用起来非常简单,今天我们就来学习在如何在Spring Cloud Gateway中进行限流操作。
目前限流提供了基于Redis的实现,我们需要增加对应的依赖:
可以通过KeyResolver来指定限流的Key,比如我们需要根据用户来做限流,IP来做限流等等。
IP限流
通过exchange对象可以获取到请求信息,这边用了HostName,如果你想根据用户来做限流的话这边可以获取当前请求的用户ID或者用户名就可以了,比如:
用户限流
使用这种方式限流,请求路径中必须携带userId参数。
接口限流
获取请求地址的uri作为限流key。
然后配置限流的过滤器信息:
可以访问接口进行测试,这时候Redis中会有对应的数据:
127.0.0.1:6379> keys *
1) "request_rate_limiter.{localhost}.timestamp"
2) "request_rate_limiter.{localhost}.tokens"
大括号中就是我们的限流Key,这边是IP,本地的就是localhost
Spring Cloud Gateway目前提供的限流还是相对比较简单的,在实际中我们的限流策略会有很多种情况,比如:
当然我们也可以通过重新RedisRateLimiter来实现自己的限流策略,这个我们后面再进行介绍。
限流源码
LUA脚本在:
local tokens_key = KEYS[1]local timestamp_key = KEYS[2]--redis.log(redis.LOG_WARNING, "tokens_key " .. tokens_key)local rate = tonumber(ARGV[1])local capacity = tonumber(ARGV[2])local now = tonumber(ARGV[3])local requested = tonumber(ARGV[4])local fill_time = capacity/ratelocal ttl = math.floor(fill_time*2)--redis.log(redis.LOG_WARNING, "rate " .. ARGV[1])--redis.log(redis.LOG_WARNING, "capacity " .. ARGV[2])--redis.log(redis.LOG_WARNING, "now " .. ARGV[3])--redis.log(redis.LOG_WARNING, "requested " .. ARGV[4])--redis.log(redis.LOG_WARNING, "filltime " .. fill_time)--redis.log(redis.LOG_WARNING, "ttl " .. ttl)local last_tokens = tonumber(redis.call("get", tokens_key))if last_tokens == nil then last_tokens = capacityend--redis.log(redis.LOG_WARNING, "last_tokens " .. last_tokens)local last_refreshed = tonumber(redis.call("get", timestamp_key))if last_refreshed == nil then last_refreshed = 0end--redis.log(redis.LOG_WARNING, "last_refreshed " .. last_refreshed)local delta = math.max(0, now-last_refreshed)local filled_tokens = math.min(capacity, last_tokens+(delta*rate))local allowed = filled_tokens >= requestedlocal new_tokens = filled_tokenslocal allowed_num = 0if allowed then new_tokens = filled_tokens - requested allowed_num = 1end--redis.log(redis.LOG_WARNING, "delta " .. delta)--redis.log(redis.LOG_WARNING, "filled_tokens " .. filled_tokens)--redis.log(redis.LOG_WARNING, "allowed_num " .. allowed_num)--redis.log(redis.LOG_WARNING, "new_tokens " .. new_tokens)redis.call("setex", tokens_key, ttl, new_tokens)redis.call("setex", timestamp_key, ttl, now)return { allowed_num, new_tokens }以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
springcloudgateway的包结构(在Idea2019.3中展示)这个包是spring-cloud-gateway-core.这里是真正的spring
在Spring-Cloud-Gateway之请求处理流程文中我们了解最终网关是将请求交给过滤器链表进行处理,接下来我们阅读Spring-Cloud-Gatewa
1.官方文档https://cloud.spring.io/spring-cloud-static/spring-cloud-openfeign/2.2.2.R
文档地址https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-ali
引入依赖org.springframework.cloudspring-cloud-dependencies${spring-cloud.version}pom