基于MATLAB神经网络图像识别的高识别率代码

时间:2021-05-19

MATLAB神经网络图像识别高识别率代码

I0=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\0 (1).png'));I1=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\1 (1).png'));I2=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\2 (1).png'));I3=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\3 (1).png'));I4=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\4 (1).png'));I5=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\5 (1).png'));I6=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\6 (1).png'));I7=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\7 (1).png'));I8=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\8 (1).png'));I9=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\9 (1).png'));%以上数据都是归一化好的数据。P=[I0',I1',I2',I3',I4',I5',I6',I7',I8',I9'];T=eye(10,10);%%bp神经网络参数设置net=newff(minmax(P),[144,200,10],{'logsig','logsig','logsig'},'trainrp');net.inputWeights{1,1}.initFcn ='randnr';net.layerWeights{2,1}.initFcn ='randnr';net.trainparam.epochs=5000;net.trainparam.show=50;net.trainparam.lr=0.001;net.trainparam.goal=0.0000000000001;net=init(net);%%%训练样本%%%%[net,tr]=train(net,P,T);PIN0=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\4 (2).png'));PIN1=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\3 (2).png'));P0=[PIN0',PIN1'];T0= sim(net ,PIN1')T1 = compet (T0) d =find(T1 == 1) - 1 fprintf('预测数字是:%d\n',d);%有较高的识别率

识别率还是挺高的。但是最大的难点问题是图像的预处理,分割,我觉得智能算法的识别已经做得很好了。最重要的是图像预处理分割。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章