时间:2021-05-19
前言
TensorFlow是Google开源的一款人工智能学习系统。为什么叫这个名字呢?Tensor的意思是张量,代表N维数组;Flow的意思是流,代表基于数据流图的计算。把N维数字从流图的一端流动到另一端的过程,就是人工智能神经网络进行分析和处理的过程。
训练了很久的Tf模型,终于要到生产环境中去考研一番了。今天花费了一些时间去研究tf的模型如何在生产环境中去使用。大概整理了这些方法。
继续使用分步骤保存了的ckpt文件
这个貌似脱离不了tensorflow框架,而且生成的ckpt文件比较大,发布到生产环境的时候,还得把python的算法文件一起搞上去,如何和其他程序交互,可能还得自己去写服务。估计很少有人这么做,貌似性能也很一般。
使用tensorflow Serving
tf Serving貌似是大家都比较推崇的方法。需要编译tfServing,然后把模型导出来。直接执行tf Serving的进程,就可以对外提供服务了。具体调用的时候,还得自己写客户端,使用人gRPC去调用Serving,然后再对外提供服务,听上去比较麻烦。而且我今天没太多的时间去研究gRPC,网络上关于客户端很多都是用python写的,我感觉自己的python水平比较菜,没信心能写好。所以这个方式就先没研究。
生产.pb文件,然后写程序去调用.pb文件
生成了.pb文件以后,就可以被程序去直接调用,传入参数,然后就可以传出来参数,而且生成的.pb文件非常的小。而我又有比较丰富的.net开发经验。在想,是否可以用C#来解析.pb文件,然后做一个.net core的对外服务的API,这样貌似更加高效,关键是自己熟悉这款的开发,不用花费太多的时间去摸索。、
具体的思路
使用.net下面的TensorFlow框架tensorflowSharp(貌似还是没脱离了框架).去调用pb文件,然后做成.net core web API 对外提供服务。
具体的实现
直接上代码,非常简单,本身设计到tensorflowsharp的地方非常的少
var graph = new TFGraph();//重点是下面的这句,把训练好的pb文件给读出来字节,然后导入var model = File.ReadAllBytes(model_file);graph.Import(model);Console.WriteLine("请输入一个图片的地址");var src = Console.ReadLine();var tensor = ImageUtil.CreateTensorFromImageFile(src);using (var sess = new TFSession(graph)){var runner = sess.GetRunner();runner.AddInput(graph["Cast_1"][0], tensor);var r = runner.Run(graph.softmax(graph["softmax_linear/softmax_linear"][0]));var v = (float[,])r.GetValue();Console.WriteLine(v[0,0]);Console.WriteLine(v[0, 1]);}ImageUtil这个类库是tensorflowSharp官方的例子中一个把图片转成tensor的类库,我直接copy过来了,根据我的网络,修改了几个参数。
public static class ImageUtil{public static TFTensor CreateTensorFromImageFile(byte[] contents, TFDataType destinationDataType = TFDataType.Float){var tensor = TFTensor.CreateString(contents);TFOutput input, output;// Construct a graph to normalize the imageusing (var graph = ConstructGraphToNormalizeImage(out input, out output, destinationDataType)){// Execute that graph to normalize this one imageusing (var session = new TFSession(graph)){var normalized = session.Run(inputs: new[] { input },inputValues: new[] { tensor },outputs: new[] { output });return normalized[0];}}}// Convert the image in filename to a Tensor suitable as input to the Inception model.public static TFTensor CreateTensorFromImageFile(string file, TFDataType destinationDataType = TFDataType.Float){var contents = File.ReadAllBytes(file);// DecodeJpeg uses a scalar String-valued tensor as input.var tensor = TFTensor.CreateString(contents);TFOutput input, output;// Construct a graph to normalize the imageusing (var graph = ConstructGraphToNormalizeImage(out input, out output, destinationDataType)){// Execute that graph to normalize this one imageusing (var session = new TFSession(graph)){var normalized = session.Run(inputs: new[] { input },inputValues: new[] { tensor },outputs: new[] { output });return normalized[0];}}}// The inception model takes as input the image described by a Tensor in a very// specific normalized format (a particular image size, shape of the input tensor,// normalized pixel values etc.).//// This function constructs a graph of TensorFlow operations which takes as// input a JPEG-encoded string and returns a tensor suitable as input to the// inception model.private static TFGraph ConstructGraphToNormalizeImage(out TFOutput input, out TFOutput output, TFDataType destinationDataType = TFDataType.Float){// Some constants specific to the pre-trained model at:// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip//// - The model was trained after with images scaled to 224x224 pixels.// - The colors, represented as R, G, B in 1-byte each were converted to// float using (value - Mean)/Scale.const int W = 128;const int H = 128;const float Mean = 0;const float Scale = 1f;var graph = new TFGraph();input = graph.Placeholder(TFDataType.String);output = graph.Cast(graph.Div(x: graph.Sub(x: graph.ResizeBilinear(images: graph.ExpandDims(input: graph.Cast(graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),dim: graph.Const(0, "make_batch")),size: graph.Const(new int[] { W, H }, "size")),y: graph.Const(Mean, "mean")),y: graph.Const(Scale, "scale")), destinationDataType);return graph;}}搞定
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一,直接保存pb1,首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型
1.tensorflow模型文件打包成PB文件importtensorflowastffromtensorflow.python.toolsimportfree
最近在学习tensorflow自带的量化工具的相关知识,其中遇到的一个问题是从tensorflow保存好的ckpt文件或者是保存后的.pb文件(这里的pb是把权
本文是将yolo3目标检测框架训练出来的ckpt文件固化成pb文件,主要利用了GitHub上的该项目。为什么要最终生成pb文件呢?简单来说就是直接通过tf.sa
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这