时间:2021-05-19
前言
微服务化产品线,每一个服务专心于自己的业务逻辑,并对外提供相应的接口,看上去似乎很明了,其实还有很多的东西需要考虑,比如:服务的自动扩充,熔断和限流等,随着业务的扩展,服务的数量也会随之增多,逻辑会更加复杂,一个服务的某个逻辑需要依赖多个其他服务才能完成。
一但一个依赖不能提供服务很可能会产生雪崩效应,最后导致整个服务不可访问。
微服务之间进行rpc或者http调用时,我们一般都会设置调用超时,失败重试等机制来确保服务的成功执行,看上去很美,如果不考虑服务的熔断和限流,就是雪崩的源头。
假设我们有两个访问量比较大的服务A和B,这两个服务分别依赖C和D,C和D服务都依赖E服务
A和B不断的调用C,D处理客户请求和返回需要的数据。当E服务不能供服务的时候,C和D的超时和重试机制会被执行
由于新的调用不断的产生,会导致C和D对E服务的调用大量的积压,产生大量的调用等待和重试调用,慢慢会耗尽C和D的资源比如内存或CPU,然后也down掉。
A和B服务会重复C和D的操作,资源耗尽,然后down掉,最终整个服务都不可访问。
常见的导致雪崩的情况有以下几种:
虽然雪崩效应的产生千万条,保证服务的不挂机,和流畅运行是我们不可推卸的责任,对应雪崩效应还是有很多保护方案的。
服务的横向扩充
现在我们可以利用很多工具来保证服务不会挂掉,然后流量比较大的时候,可以横向扩充服务来保证业务的流畅。比如我们最常使用k8s,能保证服务的运行状态,也可以让服务自动的横向扩充。对于用户访问量的激增情况这样处理还是很不错的,但是,横向扩充也是有尽头的,如果在一定环境下E服务的响应时间过长,依然有可能导致雪崩效应的产生。
限流
限制客户端的调用来达到限流的做法是很常见的,比如,我们限制每秒最大处理200个请求,超过个数量直接拒绝请求。常见的算法如令牌桶算法
以一定的速度在桶里放令牌,当客户端请求服务的时候,要先从桶里得到令牌,才能被处理,如果桶里的令牌用完了,则拒绝访问。
熔断
在客户端控制对依赖的访问,如果调用的依赖不可用时,则不再调用,直接返回错误,或者降级处理。开源的库比如hystrix-go,也是我接下来要写的源码分析的一个库。很好的实现了熔断和降级的功能。他的主要思想是,设置一些阀值,比如,最大并发数,错误率百分比,熔断尝试恢复时间等。能过这些阀值来转换熔断器的状态:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、熔断器简介微服务架构特点就是多服务,多数据源,支撑系统应用。这样导致微服务之间存在依赖关系。如果其中一个服务故障,可能导致系统宕机,这就是所谓的雪崩效应。1
1.微服务架构1.1微服务架构理解微服务架构(MicroserviceArchitecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决
通过前面几次的分享,我们了解了微服务架构的几个核心设施,通过这些组件我们可以搭建简单的微服务架构系统。比如通过springcloudeureka搭建高可用的服务
一、springcloud简介springcloud是一个基千springboot实现的微服务架构开发工具。它为微服务架构中涉及的配置管理、服务治理、断路器、智
soa和微服务的区别有: 首先SOA和微服务架构一个层面的东西,而对于ESB和微服务网关是一个层面的东西,一个谈到是架构风格和方法,一个谈的是实现工具或组件。