时间:2021-05-19
Strassen算法于1969年由德国数学家Strassen提出,该方法引入七个中间变量,每个中间变量都只需要进行一次乘法运算。而朴素算法却需要进行8次乘法运算。
Strassen算法的原理如下所示,使用sympy验证Strassen算法的正确性
import sympy as s A = s.Symbol("A")B = s.Symbol("B")C = s.Symbol("C")D = s.Symbol("D")E = s.Symbol("E")F = s.Symbol("F")G = s.Symbol("G")H = s.Symbol("H")p1 = A * (F - H)p2 = (A + B) * Hp3 = (C + D) * Ep4 = D * (G - E)p5 = (A + D) * (E + H)p6 = (B - D) * (G + H)p7 = (A - C) * (E + F) print(A * E + B * G, (p5 + p4 - p2 + p6).simplify())print(A * F + B * H, (p1 + p2).simplify())print(C * E + D * G, (p3 + p4).simplify())print(C * F + D * H, (p1 + p5 - p3 - p7).simplify())$$f(N)=7\times f(\frac{N}{2})=7^2\times f(\frac{N}{4})=...=7^k\times f(\frac{N}{2^k})$$
最终复杂度为$7^{log_2 N}=N^{log_2 7}$
代码如下,可以看看数据结构的定义,时间换空间。
public class Matrix { private final Matrix[] _matrixArray; private final int n; private int element; public Matrix(int n) { this.n = n; if (n != 1) { this._matrixArray = new Matrix[4]; for (int i = 0; i < 4; i++) { this._matrixArray[i] = new Matrix(n / 2); } } else { this._matrixArray = null; } } private Matrix(int n, boolean needInit) { this.n = n; if (n != 1) { this._matrixArray = new Matrix[4]; } else { this._matrixArray = null; } } public void set(int i, int j, int a) { if (n == 1) { element = a; } else { int size = n / 2; this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a); } } public Matrix multi(Matrix m) { Matrix result = null; if (n == 1) { result = new Matrix(1); result.set(0, 0, (element * m.element)); } else { result = new Matrix(n, false); result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m)); result._matrixArray[1] = P1(m).add(P2(m)); result._matrixArray[2] = P3(m).add(P4(m)); result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m)); } return result; } public Matrix add(Matrix m) { Matrix result = null; if (n == 1) { result = new Matrix(1); result.set(0, 0, (element + m.element)); } else { result = new Matrix(n, false); result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]); result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]); result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]); result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);; } return result; } public Matrix minus(Matrix m) { Matrix result = null; if (n == 1) { result = new Matrix(1); result.set(0, 0, (element - m.element)); } else { result = new Matrix(n, false); result._matrixArray[0] = this._matrixArray[0].minus(m._matrixArray[0]); result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]); result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]); result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);; } return result; } protected Matrix P1(Matrix m) { return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3])); } protected Matrix P2(Matrix m) { return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3])); } protected Matrix P3(Matrix m) { return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0])); } protected Matrix P4(Matrix m) { return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0])); } protected Matrix P5(Matrix m) { return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3])); } protected Matrix P6(Matrix m) { return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3])); } protected Matrix P7(Matrix m) { return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1])); } public int get(int i, int j) { if (n == 1) { return element; } else { int size = n / 2; return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size); } } public void display() { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(get(i, j)); System.out.print(" "); } System.out.println(); } } public static void main(String[] args) { Matrix m = new Matrix(2); Matrix n = new Matrix(2); m.set(0, 0, 1); m.set(0, 1, 3); m.set(1, 0, 5); m.set(1, 1, 7); n.set(0, 0, 8); n.set(0, 1, 4); n.set(1, 0, 6); n.set(1, 1, 2); Matrix res = m.multi(n); res.display(); } }到此这篇关于使用java写的矩阵乘法的文章就介绍到这了,更多相关java矩阵乘法(Strassen算法)内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本例输入为两个任意尺寸的矩阵m*n,n*m,输出为两个矩阵的乘积。计算任意尺寸矩阵相乘时,使用了Strassen算法。程序为自编,经过测试,请放心使用。基本算法
本文实例讲述了Java实现矩阵加减乘除及转制等运算功能。分享给大家供大家参考,具体如下:Java初学,编写矩阵预算程序,当做工具,以便以后写算法时使用。publ
本文实例讲述了Java实现的矩阵乘法。分享给大家供大家参考,具体如下:思路:矩阵乘法的前提是:前一矩阵的行数==后一矩阵的列数(rows==cols)在满足前提
C++中实现矩阵的加法和乘法实例实现效果图:实例代码:#includeusingnamespacestd;classMatrix{introw;//矩阵的行in
本文实例讲述了java实现的n*n矩阵求值及求逆矩阵算法。分享给大家供大家参考,具体如下:先来看看运行结果:java版的写出来了,用的跟c语言相同的算法,然后看