时间:2021-05-19
本文实例讲述了java基于链表实现队列。分享给大家供大家参考,具体如下:
在开始栈的实现之前,我们再来看看关于链表的只在头部进行的增加、删除、查找操作,时间复杂度均为O(1)。
对于队列这种数据结构,需要在线性结构的一端插入元素,另外一端删除元素。因此此时基于链表来实现队列,则有一端的时间复杂度为O(n)。因此我们不能使用之前已经实现的链表结构,我们需要改进我们的链表。思路如下:
1.参考在链表头部删除、增加元素的时间复杂度为O(1)的思路,我们在链表的尾部设立一个Node型的变量tail来记录链表的尾部在哪,此时再head端和tail端添加元素都是及其简单的,在head端删除元素也是及其简单的,但对于在tail端删除元素时,是无法在时间复杂度为O(1)的情况进行的,也就是从tail端删除元素时不容易的。
2.只在头部head删除元素(队首),在尾部tail端添加元素(队尾)。
3.由于在基于链表实现队列时不涉及到操作链表中间元素,此时我们改进的链表中,不在使用虚拟头节,因此也就可能造成在没有虚拟头节点的情况下,链表为空。
前言,在写本小节之前,我们已经实现了一个基于静态数组的队列,转到查看。此处我们实现基于链表的队列。
在实现基于静态数组的队列的时候,我们已经新建了一个package,此时我们在该package下新建一个LinkedListQueue类,用来实现Queue接口,目录结构为:
1.Queue接口代码
package Queue;public interface Queue<E> { //获取队列中元素个数 int getSize(); //队列中元素是否为空 boolean isEmpty(); //入队列 void enqueue(E e); //出队列 public E dequeue(); //获取队首元素 public E getFront();}2.LinkedListQueue类
package Queue;public class LinkedListQueue<E> implements Queue<E> { //将Node节点设计成私有的类中类 private class Node<E> { public E e; public Node next; //两个参数的构造函数 public Node(E e, Node next) { this.e = e; this.next = next; } //一个参数的构造函数 public Node(E e) { this.e = e; this.next = null; } //无参构造函数 public Node() { this(null, null); } @Override public String toString() { return e.toString(); } } private Node<E> head, tail; private int size; //显示初始化 public LinkedListQueue() { head = null; tail = null; size = 0; } //获取队列中节点个数 @Override public int getSize() { return size; } //队列中是否为空 @Override public boolean isEmpty() { return size == 0; } //链表尾部进队操作 @Override public void enqueue(E e) { if (tail == null) { tail = new Node(e); head = tail; } else { tail.next = new Node(e); tail = tail.next; } size++; } //链表头部出队操作 @Override public E dequeue() { if (isEmpty()) { throw new IllegalArgumentException("链表为空"); } Node<E> retNode = head; head = head.next; retNode.next = null; if (head == null) {//当链表只有一个元素时 tail = null; } size--; return retNode.e; } //获取队首元素 @Override public E getFront() { if (isEmpty()) { throw new IllegalArgumentException("链表为空"); } return head.e; } //为了便于测试,重写object类toString()方法 @Override public String toString() { StringBuilder res = new StringBuilder(); res.append("Queue: front "); Node<E> cur = head; while (cur != null) { res.append(cur + "->"); cur = cur.next; } res.append("NULL tail"); return res.toString(); }}3.为了便于测试,在LinkedListQueue类中添加一个main函数
//测试用例 public static void main(String[] args) { LinkedListQueue<Integer> queue = new LinkedListQueue<Integer>(); for (int i = 0; i < 10; i++) { queue.enqueue(i); System.out.println(queue); if (i % 3 == 2) {//每添加3个元素出队列一个 queue.dequeue(); System.out.println(queue); } } }4.结果为
结果分析:每进队3个元素出队列一个。
关于本小节,若您觉得还行、还过得去,记得给个推荐哦~,谢谢!!
本节源码 https://github.com/FelixBin/dataStructure/blob/master/src/Queue/LinkedListQueue.java
更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》
希望本文所述对大家java程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
这篇文章是展示通过PHP语言实现一种带尾指针的链表,然后通过链表来实现队列,其中链表的头元素head是用于列队出队的,它的时间复杂度O(1),若在head的基础
本文实例为大家分享了C语言实现循环链表的具体代码,供大家参考,具体内容如下注意事项:1、循环链表设置尾指针。由于在链表的操作过程中,尾指针会不断变化,所以在一些
逆转交替合并两个链表,即从一个链表的尾指针指向另一个链表的尾指针,依次逆转交替进行合并。下面就通过实例来详细的介绍该逆转交替合并两个链表的思路与实现代码。一、问
C语言数据结构之判断循环链表空与满前言:何时队列为空?何时为满?由于入队时尾指针向前追赶头指针,出队时头指针向前追赶尾指针,故队空和队满时头尾指针均相等。因此,
主要内容:单链表的基本操作删除重复数据找到倒数第k个元素实现链表的反转从尾到头输出链表找到中间节点检测链表是否有环在不知道头指针的情况下删除指定节点如何判断两个