时间:2021-05-19
参考java查找无向连通图中两点间所有路径的算法,对代码进行了部分修改,并编写了测试用例。
算法要求:
1. 在一个无向连通图中求出两个给定点之间的所有路径;
2. 在所得路径上不能含有环路或重复的点;
算法思想描述:
1. 整理节点间的关系,为每个节点建立一个集合,该集合中保存所有与该节点直接相连的节点(不包括该节点自身);
2. 定义两点一个为起始节点,另一个为终点,求解两者之间的所有路径的问题可以被分解为如下所述的子问题:对每一个与起始节点直接相连的节点,求解它到终点的所有路径(路径上不包括起始节点)得到一个路径集合,将这些路径集合相加就可以得到起始节点到终点的所有路径;依次类推就可以应用递归的思想,层层递归直到终点,若发现希望得到的一条路径,则转储并打印输出;若发现环路,或发现死路,则停止寻路并返回;
3. 用栈保存当前已经寻到的路径(不是完整路径)上的节点,在每一次寻到完整路径时弹出栈顶节点;而在遇到从栈顶节点无法继续向下寻路时也弹出该栈顶节点,从而实现回溯。
实现代码
1.Node.java
import java.util.ArrayList; public class Node{ public String name = null; public ArrayList<Node> relationNodes = new ArrayList<Node>(); public String getName() { return name; } public void setName(String name) { this.name = name; } public ArrayList<Node> getRelationNodes() { return relationNodes; } public void setRelationNodes(ArrayList<Node> relationNodes) { this.relationNodes = relationNodes; }}2.test.java
import java.util.ArrayList;import java.util.Iterator;import java.util.Stack; public class test { public static Stack<Node> stack = new Stack<Node>(); public static ArrayList<Object[]> sers = new ArrayList<Object[]>(); public static boolean isNodeInStack(Node node) { Iterator<Node> it = stack.iterator(); while (it.hasNext()) { Node node1 = (Node) it.next(); if (node == node1) return true; } return false; } public static void showAndSavePath() { Object[] o = stack.toArray(); for (int i = 0; i < o.length; i++) { Node nNode = (Node) o[i]; if(i < (o.length - 1)) System.out.print(nNode.getName() + "->"); else System.out.print(nNode.getName()); } sers.add(o); System.out.println("\n"); } /* * 寻找路径的方法 * cNode: 当前的起始节点currentNode * pNode: 当前起始节点的上一节点previousNode * sNode: 最初的起始节点startNode * eNode: 终点endNode */ public static boolean getPaths(Node cNode, Node pNode, Node sNode, Node eNode) { Node nNode = null; if (cNode != null && pNode != null && cNode == pNode) return false; if (cNode != null) { int i = 0; stack.push(cNode); if (cNode == eNode) { showAndSavePath(); return true; } else { /* * 从与当前起始节点cNode有连接关系的节点集中按顺序遍历得到一个节点 * 作为下一次递归寻路时的起始节点 */ nNode = cNode.getRelationNodes().get(i); while (nNode != null) { /* * 如果nNode是最初的起始节点或者nNode就是cNode的上一节点或者nNode已经在栈中 , * 说明产生环路 ,应重新在与当前起始节点有连接关系的节点集中寻找nNode */ if (pNode != null && (nNode == sNode || nNode == pNode || isNodeInStack(nNode))) { i++; if (i >= cNode.getRelationNodes().size()) nNode = null; else nNode = cNode.getRelationNodes().get(i); continue; } if (getPaths(nNode, cNode, sNode, eNode)) { stack.pop(); } i++; if (i >= cNode.getRelationNodes().size()) nNode = null; else nNode = cNode.getRelationNodes().get(i); } /* * 当遍历完所有与cNode有连接关系的节点后, * 说明在以cNode为起始节点到终点的路径已经全部找到 */ stack.pop(); return false; } } else return false; } public static void main(String[] args) { int nodeRalation[][] = { {1}, //0 {0,5,2,3},//1 {1,4}, //2 {1,4}, //3 {2,3,5}, //4 {1,4} //5 }; Node[] node = new Node[nodeRalation.length]; for(int i=0;i<nodeRalation.length;i++) { node[i] = new Node(); node[i].setName("node" + i); } for(int i=0;i<nodeRalation.length;i++) { ArrayList<Node> List = new ArrayList<Node>(); for(int j=0;j<nodeRalation[i].length;j++) { List.add(node[nodeRalation[i][j]]); } node[i].setRelationNodes(List); List = null; //释放内存 } getPaths(node[0], null, node[0], node[4]); }}输出:
node0->node1->node5->node4
node0->node1->node2->node4
node0->node1->node3->node4
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
摘要:算法导论之FloydWarshall算法求一个图中任意两点之间的最短路径FloydWarshall算法是通过动态规划来计算任意两点之间的最短路径如果普通求
以数据结构为例,最小生成树和最短路径的区别是最小生成树能够保证整个拓扑图的所有路径之和最小,但不能保证任意两点之间是最短路径。最短路径是从一点出发,到达目的地的
1.简介无向图是图结构的一种。本次程序利用邻接表实现无向图,并且通过广度优先遍历找到两点之间的最短路径。2.广度优先遍历广度优先遍历(BFS)和深度优先遍历(D
一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法。算法是基于带权无向图去寻找两个点之间的最短路
在用AutoCAD2010画的图中,我们有时候需要运用到打断这个命令,打断是指将对象在某点处打断,即一分为二,或在两点之间打断,即删除位于两点之间的那部分对