时间:2021-05-19
本文实例讲述了java数据结构与算法之桶排序实现方法。分享给大家供大家参考,具体如下:
基本思想:
假定输入是由一个随机过程产生的[0, M)区间上均匀分布的实数。将区间[0, M)划分为n个大小相等的子区间(桶),将n个输入元素分配到这些桶中,对桶中元素进行排序,然后依次连接桶输入0 ≤A[1..n] <M辅助数组B[0..n-1]是一指针数组,指向桶(链表)。将n个记录分布到各个桶中去。如果有多于一个记录分到同一个桶中,需要进行桶内排序。最后依次把各个桶中的记录列出来记得到有序序列。
[桶——关键字]映射函数
bindex=f(key) 其中,bindex 为桶数组B的下标(即第bindex个桶), k为待排序列的关键字。桶排序之所以能够高效,其关键在于这个映射函数,它必须做到:如果关键字k1<k2,那么f(k1)<=f(k2)。也就是说B(i)中的最大数据都要小于B(i+1)中最小数据。很显然,映射函数的确定与数据本身的特点有很大的关系,我们下面举个例子:
假如待排序列K= {49、 38 、 35、 97 、 76、 73 、 27、 49 }。这些数据全部在1—100之间。因此我们定制10个桶,然后确定映射函数f(k)=k/10。则第一个关键字49将定位到第4个桶中(49/10=4)。依次将所有关键字全部堆入桶中,并在每个非空的桶中进行快速排序后得到如下图所示:
对上图只要顺序输出每个B[i]中的数据就可以得到有序序列了。
算法核心代码如下:
/// <summary>/// 桶排序//////如果有重复的数字,则需要 List<int>数组,这里举的例子没有重复的数字/// </summary>/// <param name="unsorted">待排数组</param>/// <param name="maxNumber">待排数组中的最大数,如果可以提供的话</param>/// <returns></returns>static int[] bucket_sort(int[] unsorted, int maxNumber = 97){ int[] sorted = new int[maxNumber + 1]; for (int i = 0; i < unsorted.Length; i++) { sorted[unsorted[i]] = unsorted[i]; } return sorted;}static void Main(string[] args){ int[] x = {49、 38 、 35、 97 、 76、 73 、 27、 49 }; var sorted = bucket_sort(x, 97); for (int i = 0; i < sorted.Length; i++) { if (sorted[i] > 0) Console.WriteLine(sorted[i]); } Console.ReadLine();}桶排序代价分析
桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做先进的比较排序即可。
对N个关键字进行桶排序的时间复杂度分为两个部分:
(1) 循环计算每个关键字的桶映射函数,这个时间复杂度是O(N)。
(2) 利用先进的比较排序算法对每个桶内的所有数据进行排序,其时间复杂度为 ∑ O(Ni*logNi) 。其中Ni 为第i个桶的数据量。
很显然,第(2)部分是桶排序性能好坏的决定因素。尽量减少桶内数据的数量是提高效率的唯一办法(因为基于比较排序的最好平均时间复杂度只能达到O(N*logN)了)。因此,我们需要尽量做到下面两点:
(1) 映射函数f(k)能够将N个数据平均的分配到M个桶中,这样每个桶就有[N/M]个数据量。
(2) 尽量的增大桶的数量。极限情况下每个桶只能得到一个数据,这样就完全避开了桶内数据的“比较”排序操作。当然,做到这一点很不容易,数据量巨大的情况下,f(k)函数会使得桶集合的数量巨大,空间浪费严重。这就是一个时间代价和空间代价的权衡问题了。
对于N个待排数据,M个桶,平均每个桶[N/M]个数据的桶排序平均时间复杂度为:
O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM)
当N=M时,即极限情况下每个桶只有一个数据时。桶排序的最好效率能够达到O(N)。
总结: 桶排序的平均时间复杂度为线性的O(N+C),其中C=N*(logN-logM)。如果相对于同样的N,桶数量M越大,其效率越高,最好的时间复杂度达到O(N)。 当然桶排序的空间复杂度 为O(N+M),如果输入数据非常庞大,而桶的数量也非常多,则空间代价无疑是昂贵的。此外,桶排序是稳定的。
即以下三点:
1. 桶排序是稳定的
2. 桶排序是常见排序里最快的一种,比快排还要快…大多数情况下
3. 桶排序非常快,但是同时也非常耗空间,基本上是最耗空间的一种排序算法
补充:在查找算法中,基于比较的查找算法最好的时间复杂度也是O(logN)。比如折半查找、平衡二叉树、红黑树等。但是Hash表却有O(C)线性级别的查找效率(不冲突情况下查找效率达到O(1))。那么:Hash表的思想和桶排序是不是有一曲同工之妙呢?
实际上,桶排序对数据的条件有特殊要求,如果数组很大的话,那么分配几亿个桶显然是不可能的。所以桶排序有其局限性,适合元素值集合并不大的情况。
更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》
希望本文所述对大家java程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言:Java数据结构与算法专题会不定时更新,欢迎各位读者监督。本文从最简单的一个排序算法——桶排序开始,分析桶排序的实现思路,代码实现
本文实例讲述了java数据结构与算法之冒泡排序。分享给大家供大家参考,具体如下:前面文章讲述的排序算法都是基于插入类的排序,这篇文章开始介绍交换类的排序算法,即
本文实例讲述了Python数据结构与算法之常见的分配排序法。分享给大家供大家参考,具体如下:箱排序(桶排序)箱排序是根据关键字的取值范围1~m,预先建立m个箱子
本文实例讲述了Python实现的数据结构与算法之快速排序。分享给大家供大家参考。具体分析如下:一、概述快速排序(quicksort)是一种分治排序算法。该算法首
本文实例讲述了java数据结构与算法之快速排序。分享给大家供大家参考,具体如下:交换类排序的另一个方法,即快速排序。快速排序:改变了冒泡排序中一次交换仅能消除一