时间:2021-05-20
归一化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。
R语言中的归一化函数:scale
数据归一化包括数据的中心化和数据的标准化。
1. 数据的中心化
所谓数据的中心化是指数据集中的各项数据减去数据集的均值。
例如有数据集1, 2, 3, 6, 3,其均值为3,那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0
2. 数据的标准化
所谓数据的标准化是指中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集的均值再除以数据集的标准差。
例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-0.535,0,1.604,0
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。在R语言中可以使用scale方法来对数据进行中心化和标准化。
scale函数是将一组数进行处理,默认情况下是将一组数的每个数都减去这组数的平均值后再除以这组数的标准差。
其中有两个参数:
center=TRUE,默认的,是将一组数中每个数减去平均值,若为false,则不减平均值;
scale=TRUE,默认的,是将一组数中每个数除以标准差。
scale默认情况下:将一组数的每个数都减去这组数的平均值后再除以这组数的标准差。
> scale(ss) [,1][1,] -1.3805850[2,] -0.6371931[3,] 0.1061988[4,] 0.8495908[5,] 1.5929827[6,] 0.1061988[7,] -0.6371931attr(,"scaled:center")[1] 2.857143attr(,"scaled:scale")[1] 1.345185到此这篇关于R语言归一化处理实例讲解的文章就介绍到这了,更多相关R语言归一化处理内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
多数情况下,需要对数据集进行归一化处理,再对数据进行分析#首先,引入两个库,numpy,sklearnfromsklearn.preprocessingimpo
前言本文用于记录笔者在将R语言中的for语句并行化处理中的一些问题。实验这里使用foreach和doParallel包提供的函数实现for语句的并行处理。for
在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0,1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系“压缩
本文实例为大家分享了Python+PIL处理支付宝AR红包的具体代码,供大家参考,具体内容如下思路比较简单:1、对图片进行锐化处理;2、设(r_h,g_h,b_
既然了解了R语言的基本数据类型,那么如何将庞大的数据送入R语言进行处理呢?送入的数据又是如何在R语言中进行存储的呢?处理这些数据的方法又有那些呢?下面我们一起来