时间:2021-05-20
本文实例讲述了Java笛卡尔积算法原理与实现方法。分享给大家供大家参考,具体如下:
笛卡尔积算法的Java实现:
(1)循环内,每次只有一列向下移一个单元格,就是CounterIndex指向的那列。
(2)如果该列到尾部了,则这列index重置为0,而CounterIndex则指向前一列,相当于进位,把前列的index加一。
(3)最后,由生成的行数来控制退出循环。
输出共2*3*4=24行:
aa1 bb1 cc1aa1 bb1 cc2aa1 bb1 cc3aa1 bb1 cc4aa1 bb2 cc1aa1 bb2 cc2aa1 bb2 cc3aa1 bb2 cc4aa1 bb3 cc1aa1 bb3 cc2aa1 bb3 cc3aa1 bb3 cc4aa2 bb1 cc1aa2 bb1 cc2aa2 bb1 cc3aa2 bb1 cc4aa2 bb2 cc1aa2 bb2 cc2aa2 bb2 cc3aa2 bb2 cc4aa2 bb3 cc1aa2 bb3 cc2aa2 bb3 cc3aa2 bb3 cc4最近碰到了一个笛卡尔积的算法要求,比如传递过来的参数是"1,3,6,7==4,5,8,9==3,4==43,45,8,9==35,4",则返回的是一个list,如[1,4,3,43,35][1,4,3,43,4][1,4,3,45,35]……,该list包含是4*4*2*4*2=256个元素,现在的思路是这样的:
import java.util.ArrayList;import java.util.Arrays;import java.util.List;public class DescartesTest { /** * 获取N个集合的笛卡尔积 * * 说明:假如传入的字符串为:"1,2,3==5,6==7,8" * 转换成字符串数组为:[[1, 2, 3], [5, 6], [7, 8]] * a=[1, 2, 3] * b=[5, 6] * c=[7, 8] * 其大小分别为:a_length=3,b_length=2,c_length=2, * 目标list的总大小为:totalSize=3*2*2 = 12 * 对每个子集a,b,c,进行循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数) * 对a中的每个元素循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)=12/(3*4)=1次,每个元素每次循环打印次数:后续集合的笛卡尔积个数=2*2个 * 对b中的每个元素循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)=12/(2*2)=3次,每个元素每次循环打印次数:后续集合的笛卡尔积个数=2个 * 对c中的每个元素循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)=12/(2*1)=6次,每个元素每次循环打印次数:后续集合的笛卡尔积个数=1个 * * 运行结果: * [[1, 2, 3], [5, 6], [7, 8]] 1,5,7, 1,5,8, 1,6,7, 1,6,8, 2,5,7, 2,5,8, 2,6,7, 2,6,8, 3,5,7, 3,5,8, 3,6,7, 3,6,8] 从结果中可以看到: a中的每个元素每个元素循环1次,每次打印4个 b中的每个元素每个元素循环3次,每次打印2个 c中的每个元素每个元素循环6次,每次打印1个 * * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub String str ="1,3,6,7==4,5,8,9==3,4==43,45,8,9==35,4"; List<String> result = descartes(str); System.out.println(result); } @SuppressWarnings("rawtypes") public static List<String> descartes(String str) { String[] list = str.split("=="); List<List> strs = new ArrayList<List>(); for(int i=0;i<list.length;i++){ strs.add(Arrays.asList(list[i].split(","))); } System.out.println(strs); int total = 1; for(int i=0;i<strs.size();i++){ total*=strs.get(i).size(); } String[] mysesult = new String[total]; int now = 1; //每个元素每次循环打印个数 int itemLoopNum = 1; //每个元素循环的总次数 int loopPerItem =1; for(int i=0;i<strs.size();i++){ List temp = strs.get(i); now = now*temp.size(); //目标数组的索引值 int index=0; int currentSize = temp.size(); itemLoopNum = total/now; loopPerItem = total/(itemLoopNum*currentSize); int myindex = 0; for(int j=0;j<temp.size();j++){ //每个元素循环的总次数 for(int k=0;k<loopPerItem;k++){ if(myindex==temp.size()) myindex=0; //每个元素每次循环打印个数 for(int m=0;m<itemLoopNum;m++){ mysesult[index]=(mysesult[index]==null?"":mysesult[index]+",")+((String)temp.get(myindex)); index++; } myindex++; } } } return Arrays.asList(mysesult); }}运行结果输出:
[[1, 3, 6, 7], [4, 5, 8, 9], [3, 4], [43, 45, 8, 9], [35, 4]]
[1,4,3,43,35, 1,4,3,43,4, 1,4,3,45,35, 1,4,3,45,4, 1,4,3,8,35, 1,4,3,8,4, 1,4,3,9,35, 1,4,3,9,4, 1,4,4,43,35, 1,4,4,43,4, 1,4,4,45,35, 1,4,4,45,4, 1,4,4,8,35, 1,4,4,8,4, 1,4,4,9,35, 1,4,4,9,4, 1,5,3,43,35, 1,5,3,43,4, 1,5,3,45,35, 1,5,3,45,4, 1,5,3,8,35, 1,5,3,8,4, 1,5,3,9,35, 1,5,3,9,4, 1,5,4,43,35, 1,5,4,43,4, 1,5,4,45,35, 1,5,4,45,4, 1,5,4,8,35, 1,5,4,8,4, 1,5,4,9,35, 1,5,4,9,4, 1,8,3,43,35, 1,8,3,43,4, 1,8,3,45,35, 1,8,3,45,4, 1,8,3,8,35, 1,8,3,8,4, 1,8,3,9,35, 1,8,3,9,4, 1,8,4,43,35, 1,8,4,43,4, 1,8,4,45,35, 1,8,4,45,4, 1,8,4,8,35, 1,8,4,8,4, 1,8,4,9,35, 1,8,4,9,4, 1,9,3,43,35, 1,9,3,43,4, 1,9,3,45,35, 1,9,3,45,4, 1,9,3,8,35, 1,9,3,8,4, 1,9,3,9,35, 1,9,3,9,4, 1,9,4,43,35, 1,9,4,43,4, 1,9,4,45,35, 1,9,4,45,4, 1,9,4,8,35, 1,9,4,8,4, 1,9,4,9,35, 1,9,4,9,4, 3,4,3,43,35, 3,4,3,43,4, 3,4,3,45,35, 3,4,3,45,4, 3,4,3,8,35, 3,4,3,8,4, 3,4,3,9,35, 3,4,3,9,4, 3,4,4,43,35, 3,4,4,43,4, 3,4,4,45,35, 3,4,4,45,4, 3,4,4,8,35, 3,4,4,8,4, 3,4,4,9,35, 3,4,4,9,4, 3,5,3,43,35, 3,5,3,43,4, 3,5,3,45,35, 3,5,3,45,4, 3,5,3,8,35, 3,5,3,8,4, 3,5,3,9,35, 3,5,3,9,4, 3,5,4,43,35, 3,5,4,43,4, 3,5,4,45,35, 3,5,4,45,4, 3,5,4,8,35, 3,5,4,8,4, 3,5,4,9,35, 3,5,4,9,4, 3,8,3,43,35, 3,8,3,43,4, 3,8,3,45,35, 3,8,3,45,4, 3,8,3,8,35, 3,8,3,8,4, 3,8,3,9,35, 3,8,3,9,4, 3,8,4,43,35, 3,8,4,43,4, 3,8,4,45,35, 3,8,4,45,4, 3,8,4,8,35, 3,8,4,8,4, 3,8,4,9,35, 3,8,4,9,4, 3,9,3,43,35, 3,9,3,43,4, 3,9,3,45,35, 3,9,3,45,4, 3,9,3,8,35, 3,9,3,8,4, 3,9,3,9,35, 3,9,3,9,4, 3,9,4,43,35, 3,9,4,43,4, 3,9,4,45,35, 3,9,4,45,4, 3,9,4,8,35, 3,9,4,8,4, 3,9,4,9,35, 3,9,4,9,4, 6,4,3,43,35, 6,4,3,43,4, 6,4,3,45,35, 6,4,3,45,4, 6,4,3,8,35, 6,4,3,8,4, 6,4,3,9,35, 6,4,3,9,4, 6,4,4,43,35, 6,4,4,43,4, 6,4,4,45,35, 6,4,4,45,4, 6,4,4,8,35, 6,4,4,8,4, 6,4,4,9,35, 6,4,4,9,4, 6,5,3,43,35, 6,5,3,43,4, 6,5,3,45,35, 6,5,3,45,4, 6,5,3,8,35, 6,5,3,8,4, 6,5,3,9,35, 6,5,3,9,4, 6,5,4,43,35, 6,5,4,43,4, 6,5,4,45,35, 6,5,4,45,4, 6,5,4,8,35, 6,5,4,8,4, 6,5,4,9,35, 6,5,4,9,4, 6,8,3,43,35, 6,8,3,43,4, 6,8,3,45,35, 6,8,3,45,4, 6,8,3,8,35, 6,8,3,8,4, 6,8,3,9,35, 6,8,3,9,4, 6,8,4,43,35, 6,8,4,43,4, 6,8,4,45,35, 6,8,4,45,4, 6,8,4,8,35, 6,8,4,8,4, 6,8,4,9,35, 6,8,4,9,4, 6,9,3,43,35, 6,9,3,43,4, 6,9,3,45,35, 6,9,3,45,4, 6,9,3,8,35, 6,9,3,8,4, 6,9,3,9,35, 6,9,3,9,4, 6,9,4,43,35, 6,9,4,43,4, 6,9,4,45,35, 6,9,4,45,4, 6,9,4,8,35, 6,9,4,8,4, 6,9,4,9,35, 6,9,4,9,4, 7,4,3,43,35, 7,4,3,43,4, 7,4,3,45,35, 7,4,3,45,4, 7,4,3,8,35, 7,4,3,8,4, 7,4,3,9,35, 7,4,3,9,4, 7,4,4,43,35, 7,4,4,43,4, 7,4,4,45,35, 7,4,4,45,4, 7,4,4,8,35, 7,4,4,8,4, 7,4,4,9,35, 7,4,4,9,4, 7,5,3,43,35, 7,5,3,43,4, 7,5,3,45,35, 7,5,3,45,4, 7,5,3,8,35, 7,5,3,8,4, 7,5,3,9,35, 7,5,3,9,4, 7,5,4,43,35, 7,5,4,43,4, 7,5,4,45,35, 7,5,4,45,4, 7,5,4,8,35, 7,5,4,8,4, 7,5,4,9,35, 7,5,4,9,4, 7,8,3,43,35, 7,8,3,43,4, 7,8,3,45,35, 7,8,3,45,4, 7,8,3,8,35, 7,8,3,8,4, 7,8,3,9,35, 7,8,3,9,4, 7,8,4,43,35, 7,8,4,43,4, 7,8,4,45,35, 7,8,4,45,4, 7,8,4,8,35, 7,8,4,8,4, 7,8,4,9,35, 7,8,4,9,4, 7,9,3,43,35, 7,9,3,43,4, 7,9,3,45,35, 7,9,3,45,4, 7,9,3,8,35, 7,9,3,8,4, 7,9,3,9,35, 7,9,3,9,4, 7,9,4,43,35, 7,9,4,43,4, 7,9,4,45,35, 7,9,4,45,4, 7,9,4,8,35, 7,9,4,8,4, 7,9,4,9,35, 7,9,4,9,4]
递归算法:
public static void fn(List<String[]> list,String[] arr,String str){//迭代list List<String> li = new ArrayList<String>(); for(int i=0;i<list.size();i++){ //取得当前的数组 if(i==list.indexOf(arr)){ //迭代数组 System.out.println(arr.length); for(String st : arr){ st = str + st; if(i<list.size()-1){ fn(list,list.get(i+1),st); }else if(i==list.size()-1){ li.add(st); } } } } for(int i = 0 ; i < li.size();i++ ) { System.out.println(li.get(i)); }}更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》
希望本文所述对大家java程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了JS笛卡尔积算法与多重数组笛卡尔积实现方法。分享给大家供大家参考,具体如下:js笛卡尔积算法的实现代码,据对象或者数组生成笛卡尔积,并介绍了一个j
本文实例讲述了JavaScript笛卡尔积超简单实现算法。分享给大家供大家参考,具体如下:JS笛卡尔积算法functioncartesianProductOf(
本文实例讲述了javascript笛卡尔积算法实现方法。分享给大家供大家参考。具体分析如下:这里可根据给的对象或者数组生成笛卡尔积//笛卡儿积组合functio
本文实例讲述了Java基于递归和循环两种方式实现未知维度集合的笛卡尔积。分享给大家供大家参考,具体如下:什么是笛卡尔积?在数学中,两个集合X和Y的笛卡儿积(Ca
笛卡尔积笛卡尔积是指在数学中,两个集合X和Y的笛卡尔积(Cartesianproduct),又称直积,表示为X*Y,第一个对象是X的成员而第二个对象是Y的所有可