Java计算一个数加上100是完全平方数,加上168还是完全平方数

时间:2021-05-20

题目:一个整数,它加上100后是一个完全平方数,加上168又是一个完全平方数,请问该数是多少?

程序分析:在10万以内判断,先将该数加上100后再开方,再将该数加上268后再开方,如果开方后的结果满足如下条件,即是结果。请看具体分析:

程序设计:

public class test { public static void main (String[]args){ long k=0; for(k=1;k<=100000l;k++) if(Math.floor(Math.sqrt(k+100))==Math.sqrt(k+100) && Math.floor(Math.sqrt(k+168))==Math.sqrt(k+168)) System.out.println(k); }}

性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
证明 奇数必为下列五种形式之一:
10a+1, 10a+3, 10a+5, 10a+7, 10a+9
分别平方后,得
(10a+1)^2=100+20a+1=20a(5a+1)+1
(10a+3)^2=100+60a+9=20a(5a+3)+9
(10a+5)^2=100+100a+25=20 (5a+5a+1)+5
(10a+7)^2=100+140a+49=20 (5a+7a+2)+9
(10a+9)^2=100+180a+81=20 (5a+9a+4)+1
综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
证明 已知=10k+6,证明k为奇数。因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。则
10k+6=(10n+4)=100+(8n+1)x10+6
或 10k+6=(10n+6)=100+(12n+3)x10+6
即 k=10+8n+1=2(5+4n)+1
或 k=10+12n+3=2(5+6n)+3
∴ k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
这是因为 (2k+1)=4k(k+1)+1
(2k)=4
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
在性质4的证明中,由k(k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶数可得(2k)为8n型或8n+4型的数。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2。平方后,分别得
(3m)=9=3k
(3m+1)=9+6m+1=3k+1
(3m+2)=9+12m+4=3k+1
同理可以得到:
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。
除了上面关于个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。例如,256它的各位数字相加为2+5+6=13,13叫做256的各位数字和。如果再把13的各位数字相加:1+3=4,4也可以叫做256的各位数字的和。下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止。我们可以得到下面的命题:
一个数的数字和等于这个数被9除的余数。
下面以四位数为例来说明这个命题。
设四位数为,则
= 1000a+100b+10c+d
= 999a+99b+9c+(a+b+c+d)
= 9(111a+11b+c)+(a+b+c+d)
显然,a+b+c+d是四位数被9除的余数。
对於n位数,也可以仿此法予以证明。
关於完全平方数的数字和有下面的性质:
性质9:完全平方数的数字之和只能是0,1,4,7,9。
证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而
(9k)=9(9)+0
(9k±1)=9(9±2k)+1
(9k±2)=9(9±4k)+4
(9k±3)=9(9±6k)+9
(9k±4)=9(9±8k+1)+7
除了以上几条性质以外,还有下列重要性质:
性质10:为完全平方数的充要条件是b为完全平方数。
证明 充分性:设b为平方数,则
==(ac)
必要性:若为完全平方数,=,则
性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。
证明 由题设可知,a有质因数p,但无因数,可知a分解成标准式时,p的次方为1,而完全平方数分解成标准式时,各质因数的次方均为偶数,可见a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若
n^2 < k^2 < (n+1)^2
则k一定不是完全平方数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章