Java 中的 BufferedReader 介绍_动力节点Java学院整理

时间:2021-05-20

BufferedReader 介绍

BufferedReader 是缓冲字符输入流。它继承于Reader。

BufferedReader 的作用是为其他字符输入流添加一些缓冲功能。

BufferedReader 函数列表

BufferedReader(Reader in)BufferedReader(Reader in, int size)void close()void mark(int markLimit)boolean markSupported()int read()int read(char[] buffer, int offset, int length)String readLine()boolean ready()void reset()long skip(long charCount)

BufferedReader 源码分析(基于jdk1.7.40)

package java.io; public class BufferedReader extends Reader { private Reader in; // 字符缓冲区 private char cb[]; // nChars 是cb缓冲区中字符的总的个数 // nextChar 是下一个要读取的字符在cb缓冲区中的位置 private int nChars, nextChar; // 表示“标记无效”。它与UNMARKED的区别是: // (01) UNMARKED 是压根就没有设置过标记。 // (02) 而INVALIDATED是设置了标记,但是被标记位置太长,导致标记无效! private static final int INVALIDATED = -2; // 表示没有设置“标记” private static final int UNMARKED = -1; // “标记” private int markedChar = UNMARKED; // “标记”能标记位置的最大长度 private int readAheadLimit = 0; // skipLF(即skip Line Feed)是“是否忽略换行符”标记 private boolean skipLF = false; // 设置“标记”时,保存的skipLF的值 private boolean markedSkipLF = false; // 默认字符缓冲区大小 private static int defaultCharBufferSize = 8192; // 默认每一行的字符个数 private static int defaultExpectedLineLength = 80; // 创建“Reader”对应的BufferedReader对象,sz是BufferedReader的缓冲区大小 public BufferedReader(Reader in, int sz) { super(in); if (sz <= 0) throw new IllegalArgumentException("Buffer size <= 0"); this.in = in; cb = new char[sz]; nextChar = nChars = 0; } // 创建“Reader”对应的BufferedReader对象,默认的BufferedReader缓冲区大小是8k public BufferedReader(Reader in) { this(in, defaultCharBufferSize); } // 确保“BufferedReader”是打开状态 private void ensureOpen() throws IOException { if (in == null) throw new IOException("Stream closed"); } // 填充缓冲区函数。有以下两种情况被调用: // (01) 缓冲区没有数据时,通过fill()可以向缓冲区填充数据。 // (02) 缓冲区数据被读完,需更新时,通过fill()可以更新缓冲区的数据。 private void fill() throws IOException { // dst表示“cb中填充数据的起始位置”。 int dst; if (markedChar <= UNMARKED) { // 没有标记的情况,则设dst=0。 dst = 0; } else { // delta表示“当前标记的长度”,它等于“下一个被读取字符的位置”减去“标记的位置”的差值; int delta = nextChar - markedChar; if (delta >= readAheadLimit) { // 若“当前标记的长度”超过了“标记上限(readAheadLimit)”, // 则丢弃标记! markedChar = INVALIDATED; readAheadLimit = 0; dst = 0; } else { if (readAheadLimit <= cb.length) { // 若“当前标记的长度”没有超过了“标记上限(readAheadLimit)”, // 并且“标记上限(readAheadLimit)”小于/等于“缓冲的长度”; // 则先将“下一个要被读取的位置,距离我们标记的置符的距离”间的字符保存到cb中。 System.arraycopy(cb, markedChar, cb, 0, delta); markedChar = 0; dst = delta; } else { // 若“当前标记的长度”没有超过了“标记上限(readAheadLimit)”, // 并且“标记上限(readAheadLimit)”大于“缓冲的长度”; // 则重新设置缓冲区大小,并将“下一个要被读取的位置,距离我们标记的置符的距离”间的字符保存到cb中。 char ncb[] = new char[readAheadLimit]; System.arraycopy(cb, markedChar, ncb, 0, delta); cb = ncb; markedChar = 0; dst = delta; } // 更新nextChar和nChars nextChar = nChars = delta; } } int n; do { // 从“in”中读取数据,并存储到字符数组cb中; // 从cb的dst位置开始存储,读取的字符个数是cb.length - dst // n是实际读取的字符个数;若n==0(即一个也没读到),则继续读取! n = in.read(cb, dst, cb.length - dst); } while (n == 0); // 如果从“in”中读到了数据,则设置nChars(cb中字符的数目)=dst+n, // 并且nextChar(下一个被读取的字符的位置)=dst。 if (n > 0) { nChars = dst + n; nextChar = dst; } } // 从BufferedReader中读取一个字符,该字符以int的方式返回 public int read() throws IOException { synchronized (lock) { ensureOpen(); for (;;) { // 若“缓冲区的数据已经被读完”, // 则先通过fill()更新缓冲区数据 if (nextChar >= nChars) { fill(); if (nextChar >= nChars) return -1; } // 若要“忽略换行符”, // 则对下一个字符是否是换行符进行处理。 if (skipLF) { skipLF = false; if (cb[nextChar] == '\n') { nextChar++; continue; } } // 返回下一个字符 return cb[nextChar++]; } } } // 将缓冲区中的数据写入到数组cbuf中。off是数组cbuf中的写入起始位置,len是写入长度 private int read(char[] cbuf, int off, int len) throws IOException { // 若“缓冲区的数据已经被读完”,则更新缓冲区数据。 if (nextChar >= nChars) { if (len >= cb.length && markedChar <= UNMARKED && !skipLF) { return in.read(cbuf, off, len); } fill(); } // 若更新数据之后,没有任何变化;则退出。 if (nextChar >= nChars) return -; // 若要“忽略换行符”,则进行相应处理 if (skipLF) { skipLF = false; if (cb[nextChar] == '\n') { nextChar++; if (nextChar >= nChars) fill(); if (nextChar >= nChars) return -1; } } // 拷贝字符操作 int n = Math.min(len, nChars - nextChar); System.arraycopy(cb, nextChar, cbuf, off, n); nextChar += n; return n; } // 对read()的封装,添加了“同步处理”和“阻塞式读取”等功能 public int read(char cbuf[], int off, int len) throws IOException { synchronized (lock) { ensureOpen(); if ((off < 0) || (off > cbuf.length) || (len < 0) || ((off + len) > cbuf.length) || ((off + len) < 0)) { throw new IndexOutOfBoundsException(); } else if (len == 0) { return 0; } int n = read1(cbuf, off, len); if (n <= 0) return n; while ((n < len) && in.ready()) { int n1 = read1(cbuf, off + n, len - n); if (n1 <= 0) break; n += n1; } return n; } } // 读取一行数据。ignoreLF是“是否忽略换行符” String readLine(boolean ignoreLF) throws IOException { StringBuffer s = null; int startChar; synchronized (lock) { ensureOpen(); boolean omitLF = ignoreLF || skipLF; bufferLoop: for (;;) { if (nextChar >= nChars) fill(); if (nextChar >= nChars) { if (s != null && s.length() > 0) return s.toString(); else return null; } boolean eol = false; char c = 0; int i; if (omitLF && (cb[nextChar] == '\n')) nextChar++; skipLF = false; omitLF = false; charLoop: for (i = nextChar; i < nChars; i++) { c = cb[i]; if ((c == '\n') || (c == '\r')) { eol = true; break charLoop; } } startChar = nextChar; nextChar = i; if (eol) { String str; if (s == null) { str = new String(cb, startChar, i - startChar); } else { s.append(cb, startChar, i - startChar); str = s.toString(); } nextChar++; if (c == '\r') { skipLF = true; } return str; } if (s == null) s = new StringBuffer(defaultExpectedLineLength); s.append(cb, startChar, i - startChar); } } } // 读取一行数据。不忽略换行符 public String readLine() throws IOException { return readLine(false); } // 跳过n个字符 public long skip(long n) throws IOException { if (n < 0L) { throw new IllegalArgumentException("skip value is negative"); } synchronized (lock) { ensureOpen(); long r = n; while (r > 0) { if (nextChar >= nChars) fill(); if (nextChar >= nChars) break; if (skipLF) { skipLF = false; if (cb[nextChar] == '\n') { nextChar++; } } long d = nChars - nextChar; if (r <= d) { nextChar += r; r = 0; break; } else { r -= d; nextChar = nChars; } } return n - r; } } // “下一个字符”是否可读 public boolean ready() throws IOException { synchronized (lock) { ensureOpen(); // 若忽略换行符为true; // 则判断下一个符号是否是换行符,若是的话,则忽略 if (skipLF) { if (nextChar >= nChars && in.ready()) { fill(); } if (nextChar < nChars) { if (cb[nextChar] == '\n') nextChar++; skipLF = false; } } return (nextChar < nChars) || in.ready(); } } // 始终返回true。因为BufferedReader支持mark(), reset() public boolean markSupported() { return true; } // 标记当前BufferedReader的下一个要读取位置。关于readAheadLimit的作用,参考后面的说明。 public void mark(int readAheadLimit) throws IOException { if (readAheadLimit < 0) { throw new IllegalArgumentException("Read-ahead limit < 0"); } synchronized (lock) { ensureOpen(); // 设置readAheadLimit this.readAheadLimit = readAheadLimit; // 保存下一个要读取的位置 markedChar = nextChar; // 保存“是否忽略换行符”标记 markedSkipLF = skipLF; } } // 重置BufferedReader的下一个要读取位置, // 将其还原到mark()中所保存的位置。 public void reset() throws IOException { synchronized (lock) { ensureOpen(); if (markedChar < 0) throw new IOException((markedChar == INVALIDATED) ? "Mark invalid" : "Stream not marked"); nextChar = markedChar; skipLF = markedSkipLF; } } public void close() throws IOException { synchronized (lock) { if (in == null) return; in.close(); in = null; cb = null; } } }

说明:

要想读懂BufferReader的源码,就要先理解它的思想。BufferReader的作用是为其它Reader提供缓冲功能。创建BufferReader时,我们会通过它的构造函数指定某个Reader为参数。BufferReader会将该Reader中的数据分批读取,每次读取一部分到缓冲中;操作完缓冲中的这部分数据之后,再从Reader中读取下一部分的数据。

为什么需要缓冲呢?原因很简单,效率问题!缓冲中的数据实际上是保存在内存中,而原始数据可能是保存在硬盘或NandFlash中;而我们知道,从内存中读取数据的速度比从硬盘读取数据的速度至少快10倍以上。

那干嘛不干脆一次性将全部数据都读取到缓冲中呢?第一,读取全部的数据所需要的时间可能会很长。第二,内存价格很贵,容量不想硬盘那么大。

下面,我就BufferReader中最重要的函数fill()进行说明。其它的函数很容易理解,我就不详细介绍了,大家可以参考源码中的注释进行理解。我们先看看fill()的源码:

private void fill() throws IOException { int dst; if (markedChar <= UNMARKED) { dst = 0; } else { int delta = nextChar - markedChar; if (delta >= readAheadLimit) { markedChar = INVALIDATED; readAheadLimit = 0; dst = 0; } else { if (readAheadLimit <= cb.length) { System.arraycopy(cb, markedChar, cb, 0, delta); markedChar = 0; dst = delta; } else { char ncb[] = new char[readAheadLimit]; System.arraycopy(cb, markedChar, ncb, 0, delta); cb = ncb; markedChar = 0; dst = delta; } nextChar = nChars = delta; } } int n; do { n = in.read(cb, dst, cb.length - dst); } while (n == 0); if (n > 0) { nChars = dst + n; nextChar = dst; } }

根据fill()中的if...else...,我将fill()分为4种情况进行说明。

情况1:读取完缓冲区的数据,并且缓冲区没有被标记

执行流程如下,

(01) 其它函数调用 fill(),来更新缓冲区的数据

(02) fill() 执行代码 if (markedChar <= UNMARKED) { ... }

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException { int dst; if (markedChar <= UNMARKED) { dst = 0; } int n; do { n = in.read(cb, dst, cb.length - dst); } while (n == 0); if (n > 0) { nChars = dst + n; nextChar = dst; } }

说明:

这种情况发生的情况是 — — Reader中有很长的数据,我们每次从中读取一部分数据到缓冲中进行操作。每次当我们读取完缓冲中的数据之后,并且此时BufferedReader没有被标记;那么,就接着从Reader(BufferReader提供缓冲功能的Reader)中读取下一部分的数据到缓冲中。

其中,判断是否读完缓冲区中的数据,是通过“比较nextChar和nChars之间大小”来判断的。其中,nChars 是缓冲区中字符的总的个数,而 nextChar 是缓冲区中下一个要读取的字符的位置。

判断BufferedReader有没有被标记,是通过“markedChar”来判断的。

理解这个思想之后,我们再对这种情况下的fill()的代码进行分析,就特别容易理解了。

(01) if (markedChar <= UNMARKED) 它的作用是判断“BufferedReader是否被标记”。若被标记,则dst=0。

(02) in.read(cb, dst, cb.length - dst) 等价于 in.read(cb, 0, cb.length),意思是从Reader对象in中读取cb.length个数据,并存储到缓冲区cb中,而且从缓冲区cb的位置0开始存储。该函数返回值等于n,也就是n表示实际读取的字符个数。若n=0(即没有读取到数据),则继续读取,直到读到数据为止。

(03) nChars=dst+n 等价于 nChars=n;意味着,更新缓冲区数据cb之后,设置nChars(缓冲区的数据个数)为n。

(04) nextChar=dst 等价于 nextChar=0;意味着,更新缓冲区数据cb之后,设置nextChar(缓冲区中下一个会被读取的字符的索引值)为0。

情况2:读取完缓冲区的数据,缓冲区的标记位置>0,并且“当前标记的长度”超过“标记上限(readAheadLimit)”

执行流程如下,

(01) 其它函数调用 fill(),来更新缓冲区的数据

(02) fill() 执行代码 if (delta >= readAheadLimit) { ... }

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException { int dst; if (markedChar > UNMARKED) { int delta = nextChar - markedChar; if (delta >= readAheadLimit) { markedChar = INVALIDATED; readAheadLimit = 0; dst = 0; } } int n; do { n = in.read(cb, dst, cb.length - dst); } while (n == 0); if (n > 0) { nChars = dst + n; nextChar = dst; } }

说明:

这种情况发生的情况是 — — BufferedReader中有很长的数据,我们每次从中读取一部分数据到缓冲区中进行操作。当我们读取完缓冲区中的数据之后,并且此时,BufferedReader存在标记时,同时,“当前标记的长度”大于“标记上限”;那么,就发生情况2。此时,我们会丢弃“标记”并更新缓冲区。

(01) delta = nextChar - markedChar;其中,delta就是“当前标记的长度”,它是“下一个被读取字符的位置”减去“被标记的位置”的差值。

(02) if (delta >= readAheadLimit);其中,当delta >= readAheadLimit,就意味着,“当前标记的长度”>=“标记上限”。为什么要有标记上限,即readAheadLimit的值到底有何意义呢?

我们标记一个位置之后,更新缓冲区的时候,被标记的位置会被保存;当我们不停的更新缓冲区的时候,被标记的位置会被不停的放大。然后内存的容量是有效的,我们不可能不限制长度的存储标记。所以,需要readAheadLimit来限制标记长度!

(03) in.read(cb, dst, cb.length - dst) 等价于 in.read(cb, 0, cb.length),意思是从Reader对象in中读取cb.length个数据,并存储到缓冲区cb中,而且从缓冲区cb的位置0开始存储。该函数返回值等于n,也就是n表示实际读取的字符个数。若n=0(即没有读取到数据),则继续读取,直到读到数据为止。

(04) nChars=dst+n 等价于 nChars=n;意味着,更新缓冲区数据cb之后,设置nChars(缓冲区的数据个数)为n。

(05) nextChar=dst 等价于 nextChar=0;意味着,更新缓冲区数据cb之后,设置nextChar(缓冲区中下一个会被读取的字符的索引值)为0。

情况3:读取完缓冲区的数据,缓冲区的标记位置>0,“当前标记的长度”没超过“标记上限(readAheadLimit)”,并且“标记上限(readAheadLimit)”小于/等于“缓冲的长度”;
执行流程如下,

(01) 其它函数调用 fill(),来更新缓冲区的数据

(02) fill() 执行代码 if (readAheadLimit <= cb.length) { ... }

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException { int dst; if (markedChar > UNMARKED) { int delta = nextChar - markedChar; if ((delta < readAheadLimit) && (readAheadLimit <= cb.length) ) { System.arraycopy(cb, markedChar, cb, 0, delta); markedChar = 0; dst = delta; nextChar = nChars = delta; } } int n; do { n = in.read(cb, dst, cb.length - dst); } while (n == 0); if (n > 0) { nChars = dst + n; nextChar = dst; } }

说明:

这种情况发生的情况是 — — BufferedReader中有很长的数据,我们每次从中读取一部分数据到缓冲区中进行操作。当我们读取完缓冲区中的数据之后,并且此时,BufferedReader存在标记时,同时,“当前标记的长度”小于“标记上限”,并且“标记上限”小于/等于“缓冲区长度”;那么,就发生情况3。此时,我们保留“被标记的位置”(即,保留被标记位置开始的数据),并更新缓冲区(将新增的数据,追加到保留的数据之后)。

情况4:读取完缓冲区的数据,缓冲区的标记位置>0,“当前标记的长度”没超过“标记上限(readAheadLimit)”,并且“标记上限(readAheadLimit)”大于“缓冲的长度”;

执行流程如下,

(01) 其它函数调用 fill(),来更新缓冲区的数据

(02) fill() 执行代码 else { char ncb[] = new char[readAheadLimit]; ... }

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException { int dst; if (markedChar > UNMARKED) { int delta = nextChar - markedChar; if ((delta < readAheadLimit) && (readAheadLimit > cb.length) ) { char ncb[] = new char[readAheadLimit]; System.arraycopy(cb, markedChar, ncb, 0, delta); cb = ncb; markedChar = 0; dst = delta; nextChar = nChars = delta; } } int n; do { n = in.read(cb, dst, cb.length - dst); } while (n == ); if (n > ) { nChars = dst + n; nextChar = dst; } }

说明:

这种情况发生的情况是 — — BufferedReader中有很长的数据,我们每次从中读取一部分数据到缓冲区中进行操作。当我们读取完缓冲区中的数据之后,并且此时,BufferedReader存在标记时,同时,“当前标记的长度”小于“标记上限”,并且“标记上限”大于“缓冲区长度”;那么,就发生情况4。此时,我们要先更新缓冲区的大小,然后再保留“被标记的位置”(即,保留被标记位置开始的数据),并更新缓冲区数据(将新增的数据,追加到保留的数据之后)。

示例代码

关于BufferedReader中API的详细用法,参考示例代码(BufferedReaderTest.java):

import java.io.BufferedReader; import java.io.ByteArrayInputStream; import java.io.File; import java.io.InputStream; import java.io.FileReader; import java.io.IOException; import java.io.FileNotFoundException; import java.lang.SecurityException; /** * BufferedReader 测试程序 * * */ public class BufferedReaderTest { private static final int LEN = 5; public static void main(String[] args) { testBufferedReader() ; } /** * BufferedReader的API测试函数 */ private static void testBufferedReader() { // 创建BufferedReader字符流,内容是ArrayLetters数组 try { File file = new File("bufferedreader.txt"); BufferedReader in = new BufferedReader( new FileReader(file)); // 从字符流中读取5个字符。“abcde” for (int i=0; i<LEN; i++) { // 若能继续读取下一个字符,则读取下一个字符 if (in.ready()) { // 读取“字符流的下一个字符” int tmp = in.read(); System.out.printf("%d : %c\n", i, tmp); } } // 若“该字符流”不支持标记功能,则直接退出 if (!in.markSupported()) { System.out.println("make not supported!"); return ; } // 标记“当前索引位置”,即标记第6个位置的元素--“f” // 1024对应marklimit in.mark(1024); // 跳过22个字符。 in.skip(22); // 读取5个字符 char[] buf = new char[LEN]; in.read(buf, 0, LEN); System.out.printf("buf=%s\n", String.valueOf(buf)); // 读取该行剩余的数据 System.out.printf("readLine=%s\n", in.readLine()); // 重置“输入流的索引”为mark()所标记的位置,即重置到“f”处。 in.reset(); // 从“重置后的字符流”中读取5个字符到buf中。即读取“fghij” in.read(buf, , LEN); System.out.printf("buf=%s\n", String.valueOf(buf)); in.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } catch (SecurityException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } } }

程序中读取的bufferedreader.txt的内容如下:

abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

运行结果:

0 : a1 : b2 : c3 : d4 : ebuf=01234readLine=56789buf=fghij

以上所述是小编给大家介绍的Java 中的 BufferedReader 介绍_动力节点Java学院整理,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章