Java 8 Stream Api 中的 map和 flatMap 操作方法

时间:2021-05-20

1.前言

Java 8提供了非常好用的 Stream API ,可以很方便的操作集合。今天我们来探讨两个 Stream 中间操作 map(Function<? super T, ? extends R> mapper) 和 flatMap(Function<? super T, ? extends Stream<? extends R>> mapper)

2. map 操作

map 操作是将流中的元素进行再次加工形成一个新流。这在开发中很有用。比如我们有一个学生集合,我们需要从中提取学生的年龄以分析学生的年龄分布曲线。

放在Java 8 之前 我们要通过新建一个集合然后通过遍历学生集合来消费元素中的年龄属性。现在我们通过很简单的流式操作就完成了这个需求。

示意图:

对应的伪代码:

// 伪代码 List<Integer> ages=studentList.stream().map(Student::getAge).collect(Collectors.toList());

3. flatMap 操作

通过上面的例子, map 操作应该非常好理解。那么 flatMap 是干嘛的呢? 这样我们把上面的例子给改一下,如果是以班级为单位,提取所有班级下的所有学生的年龄以分析学生的年龄分布曲线。这时我们使用上面的方法还行得通吗?

List<List<Student>> studentGroup= gradeList.stream().map(Grade::getStudents).collect(Collectors.toList());

通过上面的一顿操作,我们只能得到每个班的学生集合的集合 List<List<Student>> 。 我们还需要嵌套循环才能获取学生的年龄数据,十分不便。如果我们能返回全部学生的集合 List<Students> 就方便多了。 没错! flatMap 可以搞定!

// flatMap 提取 List<Students> map 提取年龄 List<Integer> ages = grades.stream().flatMap(grade -> grade.getStudents().stream()).map(Student::getAge).collect(Collectors.toList());

正如上面的伪代码所示,我们使用 flatMap 将所有的学生汇聚到一起。然后再使用 map 操作提取年龄。 flatMap 不同于 map 地方在于 map 只是提取属性放入流中,而 flatMap 先提取属性放入一个比较小的流,然后再将所有的流合并为一个流。有一种 “聚沙成塔” 的感觉。

再画一张图来加深理解:

4. 总结

map 操作和 flatMap 操作一旦你熟悉了,可以非常简便地解决一些数据流的操作问题。扩展一下知识,其实Java 8 中 不光 Stream 中存在这两种操作,其实 Optional<T> 中也存在这两种操作,作用都差不多。

以上所述是小编给大家介绍的Java 8 Stream Api 中的 map和 flatMap 操作方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章