时间:2021-05-20
C语言数据结构中二分查找递归非递归实现并分析
前言:
二分查找在有序数列的查找过程中算法复杂度低,并且效率很高。因此较为受我们追捧。其实二分查找算法,是一个很经典的算法。但是呢,又容易写错。因为总是考虑不全边界问题。
用非递归简单分析一下,在编写过程中,如果编写的是以下的代码:
#include<iostream>#include<assert.h>using namespace std;int binaty_search(int* arr, size_t n, int x){ assert(arr); int left = 0; int right = n - 1; while (left <= right) { int mid = (left + right) / 2; if (x < arr[mid]) { right = mid-1; } else if (x > arr[mid]) { left = mid+1; } else return mid; } return -1;}int main(){ int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 0) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 1) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 2) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 3) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 4) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 5) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 6) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 7) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 8) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 9) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 10) << endl; return 0;}那么我们可以简单分析一下:
如果是以下这样的代码实现:
#include<iostream>#include<assert.h>using namespace std;int binaty_search(int* arr, size_t n, int x){ assert(arr); int left = 0; int right = n; while (left < right) { int mid = (left + right) / 2; if (x < arr[mid]) { right = mid; } else if (x > arr[mid]) { left = mid + 1; } else return mid; } return -1;}int main(){ int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 0) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 1) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 2) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 3) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 4) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 5) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 6) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 7) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 8) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 9) << endl; cout << binaty_search(arr, sizeof(arr) / sizeof(int), 10) << endl; return 0;}那么可以简单分析一下为:
同样,递归实现的条件也分为两种,我就只演示一种,代码如下:
#include<iostream>#include<assert.h>using namespace std;int binaty_srarch(int* arr, int x, int left, int right){ assert(arr); int mid; if (left <= right) { mid = (left + right) / 2; if (arr[mid] == x) { return mid; } else if (x < arr[mid]) { return binaty_srarch(arr, x, left, right - 1); } else if (x>arr[mid]) { return binaty_srarch(arr, x, left + 1, right); } } return -1;}int main(){ int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; cout << binaty_srarch(arr, 0, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 1, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 2, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 3, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 4, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 5, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 6, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 7, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 8, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 9, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; cout << binaty_srarch(arr, 10, 0, (sizeof(arr) / sizeof(int)) - 1) << endl; return 0;}感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
C++中二分查找递归非递归实现并分析二分查找在有序数列的查找过程中算法复杂度低,并且效率很高。因此较为受我们追捧。其实二分查找算法,是一个很经典的算法。但是呢,
php二分查找示例二分查找常用写法有递归和非递归,在寻找中值的时候,可以用插值法代替求中值法。当有序数组中的数据均匀递增时,采用插值方法可以将算法复杂度从中值法
数据结构二叉树的递归与非递归实例代码:#include#include#include#includeusingnamespacestd;templatestr
C语言数据结构之二叉树的非递归后序遍历算法前言:前序、中序、后序的非递归遍历中,要数后序最为麻烦,如果只在栈中保留指向结点的指针,那是不够的,必须有一些额外的信
本文以实例形式讲述了C语言实现二叉树的非递归遍历方法。是数据结构与算法设计中常用的技巧。分享给大家供大家参考。具体方法如下:先序遍历:voidpreOrder(