C++实现拓扑排序(AOV网络)

时间:2021-05-20

本文实例为大家分享了C++实现拓扑排序的具体代码,供大家参考,具体内容如下

一、思路

先扫描所有顶点,把入度为0的顶点(如C,E)进栈。然后,取栈顶元素,退栈,输出取得的栈顶元素v(即入度为0的顶点v)。接着,把顶点v的邻接顶点w的入度减1,如果w的入度变为0,则进栈。接着,取顶点w的兄弟结点(即取顶点v的邻接顶点w的下一邻接顶点),做同样的操作。重复上面步骤,直到输出n个顶点。

如上图:

(1)扫描所有顶点,把入度为0的顶点进栈:将顶点C,E进栈;

(2)取栈顶元素,退栈,输出取得的栈顶元素E。接着,把顶点E的邻接顶点A、B和F的入度减1,如果入度变为0,则进栈。因为顶点A入度变为0,所以要进栈;

(3)重复(2)步骤,直到输出n个顶点。

二、实现程序:

1.Graph.h:有向图

#ifndef Graph_h#define Graph_h #include <iostream>using namespace std; const int DefaultVertices = 30; template <class T, class E>struct Edge { // 边结点的定义 int dest; // 边的另一顶点位置 Edge<T, E> *link; // 下一条边链指针}; template <class T, class E>struct Vertex { // 顶点的定义 T data; // 顶点的名字 Edge<T, E> *adj; // 边链表的头指针}; template <class T, class E>class Graphlnk {public: const E maxValue = 100000; // 代表无穷大的值(=∞) Graphlnk(int sz=DefaultVertices); // 构造函数 ~Graphlnk(); // 析构函数 void inputGraph(int count[]); // 建立邻接表表示的图 void outputGraph(); // 输出图中的所有顶点和边信息 T getValue(int i); // 取位置为i的顶点中的值 bool insertVertex(const T& vertex); // 插入顶点 bool insertEdge(int v1, int v2); // 插入边 bool removeVertex(int v); // 删除顶点 bool removeEdge(int v1, int v2); // 删除边 int getFirstNeighbor(int v); // 取顶点v的第一个邻接顶点 int getNextNeighbor(int v,int w); // 取顶点v的邻接顶点w的下一邻接顶点 int getVertexPos(const T vertex); // 给出顶点vertex在图中的位置 int numberOfVertices(); // 当前顶点数private: int maxVertices; // 图中最大的顶点数 int numEdges; // 当前边数 int numVertices; // 当前顶点数 Vertex<T, E> * nodeTable; // 顶点表(各边链表的头结点)}; // 构造函数:建立一个空的邻接表template <class T, class E>Graphlnk<T, E>::Graphlnk(int sz) { maxVertices = sz; numVertices = 0; numEdges = 0; nodeTable = new Vertex<T, E>[maxVertices]; // 创建顶点表数组 if(nodeTable == NULL) { cerr << "存储空间分配错误!" << endl; exit(1); } for(int i = 0; i < maxVertices; i++) nodeTable[i].adj = NULL;} // 析构函数template <class T, class E>Graphlnk<T, E>::~Graphlnk() { // 删除各边链表中的结点 for(int i = 0; i < numVertices; i++) { Edge<T, E> *p = nodeTable[i].adj; // 找到其对应链表的首结点 while(p != NULL) { // 不断地删除第一个结点 nodeTable[i].adj = p->link; delete p; p = nodeTable[i].adj; } } delete []nodeTable; // 删除顶点表数组} // 建立邻接表表示的图template <class T, class E>void Graphlnk<T, E>::inputGraph(int count[]) { int n, m; // 存储顶点树和边数 int i, j, k; T e1, e2; // 顶点 cout << "请输入顶点数和边数:" << endl; cin >> n >> m; cout << "请输入各顶点:" << endl; for(i = 0; i < n; i++) { cin >> e1; insertVertex(e1); // 插入顶点 } cout << "请输入图的各边的信息:" << endl; i = 0; while(i < m) { cin >> e1 >> e2; j = getVertexPos(e1); k = getVertexPos(e2); if(j == -1 || k == -1) cout << "边两端点信息有误,请重新输入!" << endl; else { insertEdge(j, k); // 插入边 count[k]++; // 记录入度 i++; } } // while} // 输出有向图中的所有顶点和边信息template <class T, class E>void Graphlnk<T, E>::outputGraph() { int n, m, i; T e1, e2; // 顶点 Edge<T, E> *p; n = numVertices; m = numEdges; cout << "图中的顶点数为" << n << ",边数为" << m << endl; for(i = 0; i < n; i++) { p = nodeTable[i].adj; while(p != NULL) { e1 = getValue(i); // 有向边<i, p->dest> e2 = getValue(p->dest); cout << "<" << e1 << ", " << e2 << ">" << endl; p = p->link; // 指向下一个邻接顶点 } }} // 取位置为i的顶点中的值template <class T, class E>T Graphlnk<T, E>::getValue(int i) { if(i >= 0 && i < numVertices) return nodeTable[i].data; return NULL;} // 插入顶点template <class T, class E>bool Graphlnk<T, E>::insertVertex(const T& vertex) { if(numVertices == maxVertices) // 顶点表满,不能插入 return false; nodeTable[numVertices].data = vertex; // 插入在表的最后 numVertices++; return true;} // 插入边template <class T, class E>bool Graphlnk<T, E>::insertEdge(int v1, int v2) { if(v1 == v2) // 同一顶点不插入 return false; if(v1 >= 0 && v1 < numVertices && v2 >= 0 && v2 < numVertices) { Edge<T, E> *p = nodeTable[v1].adj; // v1对应的边链表头指针 while(p != NULL && p->dest != v2) // 寻找邻接顶点v2 p = p->link; if(p != NULL) // 已存在该边,不插入 return false; p = new Edge<T, E>; // 创建新结点 p->dest = v2; p->link = nodeTable[v1].adj; // 链入v1边链表 nodeTable[v1].adj = p; numEdges++; return true; } return false;} // 有向图删除顶点较麻烦template <class T, class E>bool Graphlnk<T, E>::removeVertex(int v) { if(numVertices == 1 || v < 0 || v > numVertices) return false; // 表空或顶点号超出范围 Edge<T, E> *p, *s; // 1.清除顶点v的边链表结点w 边<v,w> while(nodeTable[v].adj != NULL) { p = nodeTable[v].adj; nodeTable[v].adj = p->link; delete p; numEdges--; // 与顶点v相关联的边数减1 } // while结束 // 2.清除<w, v>,与v有关的边 for(int i = 0; i < numVertices; i++) { if(i != v) { // 不是当前顶点v s = NULL; p = nodeTable[i].adj; while(p != NULL && p->dest != v) {// 在顶点i的链表中找v的顶点 s = p; p = p->link; // 往后找 } if(p != NULL) { // 找到了v的结点 if(s == NULL) { // 说明p是nodeTable[i].adj nodeTable[i].adj = p->link; } else { s->link = p->link; // 保存p的下一个顶点信息 } delete p; // 删除结点p numEdges--; // 与顶点v相关联的边数减1 } } } numVertices--; // 图的顶点个数减1 nodeTable[v].data = nodeTable[numVertices].data; // 填补,此时numVertices,比原来numVertices小1,所以,这里不需要numVertices-1 nodeTable[v].adj = nodeTable[numVertices].adj; // 3.要将填补的顶点对应的位置改写 for(int i = 0; i < numVertices; i++) { p = nodeTable[i].adj; while(p != NULL && p->dest != numVertices) // 在顶点i的链表中找numVertices的顶点 p = p->link; // 往后找 if(p != NULL) // 找到了numVertices的结点 p->dest = v; // 将邻接顶点numVertices改成v } return true;} // 删除边template <class T, class E>bool Graphlnk<T, E>::removeEdge(int v1, int v2) { if(v1 != -1 && v2 != -1) { Edge<T, E> * p = nodeTable[v1].adj, *q = NULL; while(p != NULL && p->dest != v2) { // v1对应边链表中找被删除边 q = p; p = p->link; } if(p != NULL) { // 找到被删除边结点 if(q == NULL) // 删除的结点是边链表的首结点 nodeTable[v1].adj = p->link; else q->link = p->link; // 不是,重新链接 delete p; return true; } } return false; // 没有找到结点} // 取顶点v的第一个邻接顶点template <class T, class E>int Graphlnk<T, E>::getFirstNeighbor(int v) { if(v != -1) { Edge<T, E> *p = nodeTable[v].adj; // 对应链表第一个边结点 if(p != NULL) // 存在,返回第一个邻接顶点 return p->dest; } return -1; // 第一个邻接顶点不存在} // 取顶点v的邻接顶点w的下一邻接顶点template <class T, class E>int Graphlnk<T, E>::getNextNeighbor(int v,int w) { if(v != -1) { Edge<T, E> *p = nodeTable[v].adj; // 对应链表第一个边结点 while(p != NULL && p->dest != w) // 寻找邻接顶点w p = p->link; if(p != NULL && p->link != NULL) return p->link->dest; // 返回下一个邻接顶点 } return -1; // 下一个邻接顶点不存在} // 给出顶点vertex在图中的位置template <class T, class E>int Graphlnk<T, E>::getVertexPos(const T vertex) { for(int i = 0; i < numVertices; i++) if(nodeTable[i].data == vertex) return i; return -1;} // 当前顶点数template <class T, class E>int Graphlnk<T, E>::numberOfVertices() { return numVertices;} #endif

2.TopLogicalSort.h

#ifndef TopLogicalSort_h#define TopLogicalSort_h#include "Graph.h" template <class T, class E>void TopLogicalSort(Graphlnk<T, E> &G) { int i, w, v; int n; // 顶点数 int *count = new int[DefaultVertices]; // 入度数组 int top = -1; // 清零 for(i = 0; i< DefaultVertices; i++) count[i] = 0; // 输入顶点和边 G.inputGraph(count); n = G.numberOfVertices(); // 获取图的顶点数 for(i = 0; i < n; i++) { // 检查网络所有顶点 if(count[i] == 0) { // 入度为0的顶点进栈 count[i] = top; top = i; } } // 进行拓扑排序,输出n个顶点 for(i = 0; i < n; i++) { if(top == -1) { // 空栈 cout << "网络中有回路!" << endl; return; } else { v = top; top = count[top]; cout << G.getValue(v) << " "; // 输出入度为0的顶点 w = G.getFirstNeighbor(v); // 邻接顶点 while(w != -1) { // 扫描出边表 if(--count[w] == 0) { // 邻接顶点入度减1,如果入度为0则进栈 count[w] = top; top = w; } w = G.getNextNeighbor(v, w); // 兄弟结点(取顶点v的邻接顶点w的下一邻接顶点) } } } cout << endl;} #endif 3.main.cpp#include "TopLogicalSort.h" int main(int argc, const char * argv[]) { Graphlnk<char, int> G; // 声明图对象 TopLogicalSort(G); // AOV网络的拓扑排序 return 0;}

测试数据:

6 8
A B C D E F
A B
A D
B F
C B
C F
E A
E F
E B

测试结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章