时间:2021-05-20
Template所代表的泛型编程是C++语言中的重要的组成部分,我将通过几篇blog对这半年以来的学习做一个系统的总结,本文是基础篇的第一部分。
为什么要有泛型编程
C++是一门强类型语言,所以无法做到像动态语言(python javascript)那样子,编写一段通用的逻辑,可以把任意类型的变量传进去处理。泛型编程弥补了这个缺点,通过把通用逻辑设计为模板,摆脱了类型的限制,提供了继承机制以外的另一种抽象机制,极大地提升了代码的可重用性。
注意:模板定义本身不参与编译,而是编译器根据模板的用户使用模板时提供的类型参数生成代码,再进行编译,这一过程被称为模板实例化。用户提供不同的类型参数,就会实例化出不同的代码。
函数模板定义
把处理不同类型的公共逻辑抽象成函数,就得到了函数模板。
函数模板可以声明为inline或者constexpr的,将它们放在template之后,返回值之前即可。
普通函数模板
下面定义了一个名叫compare的函数模板,支持多种类型的通用比较逻辑。
template<typename T>int compare(const T& left, const T& right) { if (left < right) { return -1; } if (right < left) { return 1; } return 0;}compare<int>(1, 2); //使用模板函数成员函数模板
不仅普通函数可以定义为模板,类的成员函数也可以定义为模板。
class Printer {public: template<typename T> void print(const T& t) { cout << t <<endl; }};Printer p;p.print<const char*>("abc"); //打印abc为什么成员函数模板不能是虚函数(virtual)?
这是因为c++ compiler在parse一个类的时候就要确定vtable的大小,如果允许一个虚函数是模板函数,那么compiler就需要在parse这个类之前扫描所有的代码,找出这个模板成员函数的调用(实例化),然后才能确定vtable的大小,而显然这是不可行的,除非改变当前compiler的工作机制。
实参推断
为了方便使用,除了直接为函数模板指定类型参数之外,我们还可以让编译器从传递给函数的实参推断类型参数,这一功能被称为模板实参推断。
如何使用
有意思的是,还可以通过把函数模板赋值给一个指定类型的函数指针,让编译器根据这个指针的类型,对模板实参进行推断。
int (*pf) (const int&, const int&) = compare; //推断T的类型为int当返回值类型也是参数时
当一个模板函数的返回值类型需要用另外一个模板参数表示时,你无法利用实参推断获取全部的类型参数,这时有两种解决办法:
返回值类型与参数类型完全无关,那么就需要显示的指定返回值类型,其他的类型交给实参推断。
注意:此行为与函数的默认实参相同,我们必须从左向右逐一指定。
template<typename T1, typename T2, typename T3>T1 sum(T2 v2, T3 v3) { return static_cast<T1>(v2 + v3);}auto ret = sum<long>(1L, 23); //指定T1, T2和T3交由编译器来推断template<typename T1, typename T2, typename T3>T3 sum_alternative(T1 v1, T2 v2) { return static_cast<T1>(v1 + v2);}auto ret = sum_alternative<long>(1L, 23); //error,只能从左向右逐一指定auto ret = sum_alternative<long,int,long>(1L,23); //ok, 谁叫你把最后一个T3作为返回类型的呢?返回值类型可以从参数类型中获得,那么把函数写成尾置返回类型的形式,就可以愉快的使用实参推断了。
template<typename It>auto sum(It beg, It end) -> decltype(*beg) { decltype(*beg) ret = *beg; for (It it = beg+1; it != end; it++) { ret = ret + *it; } return ret;}vector<int> v = {1, 2, 3, 4};auto s = sum(v.begin(), v.end()); //s = 10实参推断时的自动类型转换
编译器进行模板实参推断时通常不会对实参进行类型转换,只有以下几种情况例外:
函数模板重载
函数模板之间,函数模板与普通函数之间可以重载。编译器会根据调用时提供的函数参数,调用能够处理这一类型的最特殊的版本。在特殊性上,一般按照如下顺序考虑:
对于如何判断某个模板更加特殊,原则如下:如果模板B的所有实例都可以实例化模板A,而反过来则不行,那么B就比A特殊。
template<typename T>void func(T& t) { //通用模板函数 cout << "In generic version template " << t << endl;}template<typename T>void func(T* t) { //指针版本 cout << "In pointer version template "<< *t << endl;}void func(string* s) { //普通函数 cout << "In normal function " << *s << endl;}int i = 10;func(i); //调用通用版本,其他函数或者无法实例化或者不匹配func(&i); //调用指针版本,通用版本虽然也可以用,但是编译器选择最特殊的版本string s = "abc";func(&s); //调用普通函数,通用版本和特殊版本虽然也都可以用,但是编译器选择最特化的版本func<>(&s); //调用指针版本,通过<>告诉编译器我们需要用template而不是普通函数模板函数特化
有时通用的函数模板不能解决个别类型的问题,我们必须对此进行定制,这就是函数模板的特化。函数模板的特化必须把所有的模版参数全部指定。
以上所述是小编给大家介绍的C++ Template函数模板解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文针对C++函数模板与类模板进行了较为详尽的实例解析,有助于帮助读者加深对C++函数模板与类模板的理解。具体内容如下:泛型编程(GenericProgramm
引言模板(Template)指C++程序设计设计语言中采用类型作为参数的程序设计,支持通用程序设计。C++的标准库提供许多有用的函数大多结合了模板的观念,如ST
引言模板(Template)指C++程序设计设计语言中采用类型作为参数的程序设计,支持通用程序设计。C++的标准库提供许多有用的函数大多结合了模板的观念,如ST
C++函数模板我们知道,数据或数值可以通过函数参数传递,在函数定义时它们是未知的,只有在发生函数调用时才能确定其值。这就是数据的参数化。其实,数据类型也可以通过
C++11关于模板有一些细节的改进:模板的右尖括号模板的别名函数模板的默认模板参数模板的右尖括号C++11之前是不允许两个右尖括号出现的,会被认为是右移操作符,