10个步骤Opencv轻松检测出图片中条形码

时间:2021-05-21

本文为大家分享了Opencv轻松检测出图片中条形码的步骤,供大家参考,具体内容如下

1. 原图像大小调整,提高运算效率


2. 转化为灰度图


3. 高斯平滑滤波


4.求得水平和垂直方向灰度图像的梯度差,使用Sobel算子


5.均值滤波,消除高频噪声


6.二值化


7.闭运算,填充条形码间隙


8. 腐蚀,去除孤立的点


9. 膨胀,填充条形码间空隙,根据核的大小,有可能需要2~3次膨胀操作


10.通过findContours找到条形码区域的矩形边界


实现:

#include "core/core.hpp" #include "highgui/highgui.hpp" #include "imgproc/imgproc.hpp" using namespace cv; int main(int argc,char *argv[]) { Mat image,imageGray,imageGuussian; Mat imageSobelX,imageSobelY,imageSobelOut; image=imread(argv[1]); //1. 原图像大小调整,提高运算效率 resize(image,image,Size(500,300)); imshow("1.原图像",image); //2. 转化为灰度图 cvtColor(image,imageGray,CV_RGB2GRAY); imshow("2.灰度图",imageGray); //3. 高斯平滑滤波 GaussianBlur(imageGray,imageGuussian,Size(3,3),0); imshow("3.高斯平衡滤波",imageGuussian); //4.求得水平和垂直方向灰度图像的梯度差,使用Sobel算子 Mat imageX16S,imageY16S; Sobel(imageGuussian,imageX16S,CV_16S,1,0,3,1,0,4); Sobel(imageGuussian,imageY16S,CV_16S,0,1,3,1,0,4); convertScaleAbs(imageX16S,imageSobelX,1,0); convertScaleAbs(imageY16S,imageSobelY,1,0); imageSobelOut=imageSobelX-imageSobelY; imshow("4.X方向梯度",imageSobelX); imshow("4.Y方向梯度",imageSobelY); imshow("4.XY方向梯度差",imageSobelOut); //5.均值滤波,消除高频噪声 blur(imageSobelOut,imageSobelOut,Size(3,3)); imshow("5.均值滤波",imageSobelOut); //6.二值化 Mat imageSobleOutThreshold; threshold(imageSobelOut,imageSobleOutThreshold,180,255,CV_THRESH_BINARY); imshow("6.二值化",imageSobleOutThreshold); //7.闭运算,填充条形码间隙 Mat element=getStructuringElement(0,Size(7,7)); morphologyEx(imageSobleOutThreshold,imageSobleOutThreshold,MORPH_CLOSE,element); imshow("7.闭运算",imageSobleOutThreshold); //8. 腐蚀,去除孤立的点 erode(imageSobleOutThreshold,imageSobleOutThreshold,element); imshow("8.腐蚀",imageSobleOutThreshold); //9. 膨胀,填充条形码间空隙,根据核的大小,有可能需要2~3次膨胀操作 dilate(imageSobleOutThreshold,imageSobleOutThreshold,element); dilate(imageSobleOutThreshold,imageSobleOutThreshold,element); dilate(imageSobleOutThreshold,imageSobleOutThreshold,element); imshow("9.膨胀",imageSobleOutThreshold); vector<vector<Point>> contours; vector<Vec4i> hiera; //10.通过findContours找到条形码区域的矩形边界 findContours(imageSobleOutThreshold,contours,hiera,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE); for(int i=0;i<contours.size();i++) { Rect rect=boundingRect((Mat)contours[i]); rectangle(image,rect,Scalar(255),2); } imshow("10.找出二维码矩形区域",image); waitKey(); }

使用另一幅图片的效果如下:


底部的二维码左侧边界定位错位,检测发现在二值化的时候左侧第二个条码部分被归零了,导致在之后的腐蚀操作中被腐蚀掉了。调整阈值分界值180到160,重新运行正确:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章