时间:2021-05-22
在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow() 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic' 可以很好的做出渐变效果。
代码
# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020@author: fya"""import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplfig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围a = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅print(a.shape)clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处frame = plt.gca() #读取当前图层ax.yaxis.tick_right() #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要plt.show()fig.savefig('colorbar.tif',dpi=600,format='tif')print('Done!')#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)#ax.set_aspect('auto')#plt.show()代码2,渐变色分100段
# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020@author: fanyiang"""import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport osfig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals() dfvalue=locals() for i in range(1,101): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe df=dfvalue['df'+str(i)] df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去df3=pd.read_csv('temp.csv',header=None)#读取csvdf3.columns=['序号','x','y']#column命名,第一列废弃df3=df3.drop('序号',axis=1)#删除第一列a=np.array(df3) #转arrayprint(df3.head()) #a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))print(a)clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处frame = plt.gca() #读取当前图层ax.yaxis.tick_right() #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要plt.show()fig.savefig('colorbar.tif',dpi=600,format='tif')os.remove("temp.csv") #删除临时的csv文件print('Done!')#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)#ax.set_aspect('auto')#plt.show()效果1
效果2
到此这篇关于Python利用imshow制作自定义渐变填充柱状图(colorbar)的文章就介绍到这了,更多相关Python 渐变填充柱状图内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
先看一下动态柱状图效果。主要功能是可以自定义指定的字体,柱状图颜色,动态效果。在自定义viewpublicclassHistogramextendsView{i
pythonmatplotlib画图使用colorbar工具自定义颜色colorbar(drawcolorbarwithoutanymapple/plot)自定
典型的图表类型包括以下几种。(1)柱状图。典型的柱状图主要有标准的柱状图、多层的柱状图、水平的柱状图、垂直的柱状图、曲线柱状图以及离散柱状图。(2)饼图。典型的
柱状图是PPT中经常使用到的数据展现元素。一份制作精良的柱状图表能够有效的展现数据变化趋势。制作柱状图也有很多方法,最常用的是直接采用PPT中插入数据图表的方式
柱状图是经常需要绘制的图,本文讲解如何在软件绘制的默认的柱状图的基础上对柱状图进行美化设计,得到一张漂亮的柱状图。1、录入数据。2、选择数据,插入柱状图,得到软