时间:2021-05-22
from PIL import Imagefrom pylab import *from numpy import *def histeq(im,nbr_bins = 256): """对一幅灰度图像进行直方图均衡化""" #计算图像的直方图 #在numpy中,也提供了一个计算直方图的函数histogram(),第一个返回的是直方图的统计量,第二个为每个bins的中间值 imhist,bins = histogram(im.flatten(),nbr_bins,normed= True) cdf = imhist.cumsum() # cdf = 255.0 * cdf / cdf[-1] #使用累积分布函数的线性插值,计算新的像素值 im2 = interp(im.flatten(),bins[:-1],cdf) return im2.reshape(im.shape),cdfpil_im = Image.open('E:\Python\\fanwei.jpg') #打开原图pil_im_gray = pil_im.convert('L') #转化为灰度图像pil_im_gray.show() #显示灰度图像im = array(Image.open('E:\Python\\fanwei.jpg').convert('L'))# figure()# hist(im.flatten(),256)im2,cdf = histeq(im)# figure()# hist(im2.flatten(),256)# show()im2 = Image.fromarray(uint8(im2))im2.show()# print(cdf)# plot(cdf)im2.save("junheng.jpg")
图1:原图的灰度图
图2:进行直方图均衡化后的图像
图3:原图灰度图的直方图
图4:进行直方图均衡化后的直方图
图5:灰度变换函数
以上就是python 对一幅灰度图像进行直方图均衡化的详细内容,更多关于python 直方图均衡化的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法。直方图均衡化的步骤:1、计算输入图像的直方图H2、进行直方图归一化,使直方图组距的和为2553
本文实例讲述了Python图像处理实现两幅图像合成一幅图像的方法。分享给大家供大家参考,具体如下:将两幅图像合成一幅图像,是图像处理中常用的一种操作,pytho
使用python编写了共六种图像增强算法:1)基于直方图均衡化2)基于拉普拉斯算子3)基于对数变换4)基于伽马变换5)限制对比度自适应直方图均衡化:CLAHE6
本文实例为大家分享了Opencv实现最小外接矩形和圆的具体代码,供大家参考,具体内容如下步骤:将一幅图像先转灰度,再canny边缘检测得到二值化边缘图像,再寻找
前言众所周知一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。红色、绿色、蓝色三个通道的缩览图都是以灰度显示的。用不同的灰度色阶来表示"红,绿,蓝"在图像中的