时间:2021-05-22
这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
为什么要离散化
什么是数据的离散化
连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值
分箱
案例
1.先读取股票的数据,筛选出p_change数据
data = pd.read_csv("./data/stock_day.csv")p_change= data['p_change']2.将股票涨跌幅数据进行分组
使用的工具:
自定义区间分组:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
用途pandas.cut用来把一组数据分割成离散的区间。比如有一组年龄数据,可以使用pandas.cut将年龄数据分割成不同的年龄段并打上标签。原型pandas
Python实现连续数据的离散化处理主要基于两个函数,pandas.cut和pandas.qcut,前者根据指定分界点对连续数据进行分箱处理,后者则可以根据指定
Pandas的apply函数概念(图解)实例1:怎样对数值按分组的归一化实例2:怎样取每个分组的TOPN数据到此这篇关于Pandas对每个分组应用apply函数
本文实例讲述了JavaScript解析及序列化JSON的方法。分享给大家供大家参考,具体如下:JSON之所以这么流行,是因为JSON数据结构可以被解析为Java
Gson反序列化原理原理简述gson反序列化主要分为两个过程:根据TypeToken创建出对象根据json字符串解析数据,对对象属性赋值对象的创建Constru