时间:2021-05-22
这篇文章主要介绍了Python numpy数组转置与轴变换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
矩阵的转置
矩阵的内积
轴变换
二维轴变换
1.两轴交换
>>> import numpy as np>>> arr=np.arange(15).reshape((3,5))>>> arrarray([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]])>>> arr.transpose(1,0)#1轴和0轴进行交换array([[ 0, 5, 10], [ 1, 6, 11], [ 2, 7, 12], [ 3, 8, 13], [ 4, 9, 14]])三维轴变换
1.这种变化有点麻烦,不好理解。但是如果简单化就好了,加入用P(x,y,z)来表示矩阵中的每一个点,那么在numpy中,这个x,y,z就分别对应0,1,2
2.举个例子比如原来数组中0这个元素,它原来的坐标是(0,0,0),那么transpose(1,0,2)对于这个点来说就是把x,y坐标互换,而z坐标不变,则其在新的矩阵中坐标依旧是(0,0,0)不变
3.举个另外点的例子比如4这个点,其坐标是(0,1,1),那么它的x和y坐标交换之后是(1,0,1),所以它在新的矩阵中位置是(1,0,1)
4.事实上transpose函数正是对原来矩阵中每个点做这个变换,最后得到新的矩阵
两轴交换
交换1轴和2轴
>>> arrarray([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]])>>> arr.swapaxes(1,2)array([[[ 0, 4], [ 1, 5], [ 2, 6], [ 3, 7]], [[ 8, 12], [ 9, 13], [10, 14], [11, 15]]])>>> arrarray([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]])以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
利用Python进行数据分析时,Numpy是最常用的库,经常用来对数组、矩阵等进行转置等,有时候用来做数据的存储。在numpy中,转置transpose和轴对换
Numpy数组转置很容易,两种写法np_array=np.array([[1,2],[3,4]])np_array.transpose()np.transpos
numpy.amin()和numpy.amax()numpy.amin()用于计算数组中元素沿着指定轴的最小值。numpy.amax()用于计算数组中元素沿着指
NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的
看代码,tensor转numpy:a=torch.ones(2,2)b=a.numpy()c=np.array(a)#也可以转numpy数组print(type