时间:2021-05-22
这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
前言
下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了;
程序涉及计算、文件读写,鉴于计算内容挺多的,就用多进程了(计算密集)。
代码
import pandas as pdfrom pathlib import Pathfrom concurrent.futures import ProcessPoolExecutorparse_path = '/data1/v-gazh/CRSP/dsf_full_fields/parse'source_path = '/data1/v-gazh/CRSP/dsf_full_fields/2th_split' # 目录中有3.3W个csv文件,串行的话,效率大打折扣def parseData(): source_path_list = list(Path(source_path).glob('*.csv')) multi_process = ProcessPoolExecutor(max_workers=20) multi_results = multi_process.map(func, source_path_list)def func(p): source_p = str(p) parse_p = str(p).replace('2th_split', 'parse') df = pd.read_csv(source_p) df['date'] = pd.to_datetime(df['date'].astype(str)).dt.date df.sort_values(['date'], inplace=True) # 处理close为负的值(abs),添加status标识 df['is_close'] = df['PRC'].map(lambda x: 0 if x < 0 or pd.isna(x) else 1) df['PRC'] = df['PRC'].abs() df.rename(columns={'CFACPR': 'factor'}, inplace=True) df['adj_low'] = df['BIDLO'] * df['factor'] df['adj_high'] = df['ASKHI'] * df['factor'] df['adj_close'] = df['PRC'] * df['factor'] df['adj_open'] = df['OPENPRC'] * df['factor'] df['adj_volume'] = df['VOL'] / df['factor'] # calc change df['change'] = df['adj_close'].diff(1) / df['adj_close'].shift(1) df.drop_duplicates(inplace=True) df.to_csv(parse_p, index=False)parseData()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了php多进程并发编程防止出现僵尸进程的方法。分享给大家供大家参考,具体如下:对于用PHP进行多进程并发编程,不可避免要遇到僵尸进程的问题。僵尸进程
我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。多进程编程在python中有类似C的os.fork,当然还有更高层封装的multip
本文实例讲述了python进程池实现的多进程文件夹copy器。分享给大家供大家参考,具体如下:应用:文件夹copy器(多进程版)importmultiproce
Python多进程默认不能共享全局变量主进程与子进程是并发执行的,进程之间默认是不能共享全局变量的(子进程不能改变主进程中全局变量的值)。如果要共享全局变量需要
本文实例为大家解析了Python多线程,供大家参考,具体内容如下1、多线程的理解多进程和多线程都可以执行多个任务,线程是进程的一部分。线程的特点是线程之间可以共