时间:2021-05-22
这篇文章主要介绍了Python二次规划和线性规划使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
对于二次规划(quadratic programming)和线性规划(Linear Programming)问题
MATLAB里是有quadprog函数可以直接用来解决二次规划问题的,linprog函数来解决线性规划问题。Python中也有很多库用来解决,对于二次规划有CVXOPT, CVXPY, Gurobi, MOSEK, qpOASES 和 quadprog; 对于线性规划有Gurobi,PuLP, cvxopt。
目前发现quadprog进行pip install quadprog不成功,而cvxopt成功了,就先说cvxopt的使用。
安装
安装非常顺利
使用
cvxopt有自己的matrix格式,因此使用前得包装一下
对于二次规划:
def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None): P = .5 * (P + P.T) # make sure P is symmetric args = [cvxopt.matrix(P), cvxopt.matrix(q)] if G is not None: args.extend([cvxopt.matrix(G), cvxopt.matrix(h)]) if A is not None: args.extend([cvxopt.matrix(A), cvxopt.matrix(b)]) sol = cvxopt.solvers.qp(*args) if 'optimal' not in sol['status']: return None return np.array(sol['x']).reshape((P.shape[1],))对于线性规划:
def cvxopt_solve_lp(f, A, b): #args = [cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b)] #cvxopt.solvers.lp(*args) sol = cvxopt.solvers.lp(cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b)) return np.array(sol['x']).reshape((f.shape[0],))参考:
Quadratic Programming in Python
Linear Programming in Python with CVXOPT
cvxopt.org
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、背景:现在项目上有一个用python实现非线性规划的需求。非线性规划可以简单分两种,目标函数为凸函数or非凸函数。凸函数的非线性规划,比如fun=x^2+y
Python中支持ConvexOptimization(凸规划)的模块为CVXOPT,其安装方式为:pipinstallcvxopt一、数学基础二次型二次型(q
应该怎么用lingo求解整数规划?目前大学生接触较多的数学软件是matlab,其自带的linprog函数能够解决大量的线性规划问题,但是却没有用于解决整数规划的
通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多:importnumpyasnpimp
本文实例讲述了Python实现的拟合二元一次函数功能。分享给大家供大家参考,具体如下:背景:使用scipy拟合一元二次函数。参考:HYRYStudio-《用Py