时间:2021-05-22
这是一个非常愚蠢的错误
debug的时候要好好看error信息
提醒自己切记好好对待error!切记!切记!
-----------------------分割线----------------
pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令
#保存整个网络和参数torch.save(your_net, 'save_name.pkl')#加载保存的模型net = torch.load('save_name.pkl')因为我比较懒我就想直接把整个网络都保存下来,然后在test文件中直接load一下不就好了?
就遭受了这样的错误。看错了error信息,把‘Net'看成‘net'。报错没有属性‘net'?这个不是我自己写的变量名么?
-----------------瞎捣鼓1h后(呵呵呵)----------------
回头看error,没有属性‘Net',Net???
我当下明白过来,应该是test文件中没有把它import进来,test中就没有任何关于Net的信息。我直接把定义的Net复制进了test.py,就顺利加载了训练好的模型。
但是我也有一个疑问,我理解的把整个模型保存难道不是把它的结构都保存下来了么?为什么还要再把这个网络import一次?来自python、pytorch、面向对象编程三次元小白的疑惑,先存个疑,搞懂了再来回答。
接下来试试只保存网络参数
#只保存网络参数torch.save(your_net.state_dict(), 'save_name.pkl')#加载保存的模型net.load_state_dict(torch.load('save_name.pkl'))保存网络参数
重新定义网络
报错
想死。。。
仔细看了报错信息,以我小白的理解,我感觉保存下来的可能只是单纯的数据,而不是一个对象(没有方法可以操作),或者该对象没有.copy()方法,所以没有办法进行.copy(),那肯定是保存哪里出错了。然后发现保存部分代码写错了,改成
print一下 net.state_dict和net.state_dict(),前者输出的是网络结构,后者才是网络的参数。
试着回答之前的问题,第二种保存模型的方法只保存了网络的参数(包括卷积层和全连接层每次的weight,bias),所以再加载模型的时候需要先定义网络无可厚非,就像训练时候定义网络那样定义就可以;而第一种保存整个网络的方法,保存了一个网络的实例(包括它的所有结构和参数),net是Net的一个实例,那为什么还要有Class Net的定义呢,还是回答不了。。
那就继续存疑,保持探究精神吧。。
以上这篇解决Pytorch 加载训练好的模型 遇到的error问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pytorch预训练层的使用方法将其他地方训练好的网络,用到新的网络里面加载预训练网络1.原先已经训练好一个网络AutoEncoder_FC()2.首先加载该网
目标是想把在服务器上用pytorch训练好的模型转换为可以在移动端运行的tflite模型。最直接的思路是想把pytorch模型转换为tensorflow的模型,
有一些非常流行的网络如resnet、squeezenet、densenet等在pytorch里面都有,包括网络结构和训练好的模型。pytorch自带模型网址:h
最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,
问题描述有时在加载已训练好的模型时,会出现outofmemory的错误提示,但仔细检测使用的GPU卡并没有再用且内存也没有超出。经查阅发现原来是训练模型时使用的