时间:2021-05-22
之前的文章讲过用Tensorflow的object detection api训练MobileNetV2-SSDLite,然后发现训练的时候没有利用到GPU,反而CPU占用率贼高(可能会有Could not dlopen library 'libcudart.so.10.0'之类的警告)。经调查应该是Tensorflow的GPU版本跟服务器所用的cuda及cudnn版本不匹配引起的。知道问题所在之后就好办了。
检查cuda和cudnn版本
首先查看cuda版本:
cat /usr/local/cuda/version.txt以及cudnn版本:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2重新安装对应版本Tensorflow
根据前面查看得到的cuda和cudnn版本,到Tensorflow官网查看对应的Tensorflow-GPU版本,然后用conda install tensorflow-gpu=[version]重新安装(把[version]换成对应的版本比如1.12)就OK了。
以上这篇基于Tensorflow使用CPU而不用GPU问题的解决就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
问题描述:为了把之前的CPU版本的tensorflow卸载,换成GPU版本的tensorflow,经历了一番折腾。BUG1Couldnotinstallpack
一、硬件要求首先,TensorFlow-gpu不同于CPU版本的地方在于,GPU版本必须有GPU硬件的支撑。TensorFlow对NVIDIA显卡的支持较为完备
更新tensorflow后,出现tensorboard不可用情况(tensorflow-cpu1.4->tensorflow-gpu1.7)尝试了更新tenso
Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性
初步尝试Keras(基于Tensorflow后端)深度框架时,发现其对于GPU的使用比较神奇,默认竟然是全部占满显存,1080Ti跑个小分类问题,就一下子满了.