时间:2021-05-22
之前用Class类来搭建神经网络
class Neuro_net(torch.nn.Module): """神经网络""" def __init__(self, n_feature, n_hidden_layer, n_output): super(Neuro_net, self).__init__() self.hidden_layer = torch.nn.Linear(n_feature, n_hidden_layer) self.output_layer = torch.nn.Linear(n_hidden_layer, n_output) def forward(self, input): hidden_out = torch.relu(self.hidden_layer(input)) out = self.output_layer(hidden_out) return out net = Neuro_net(2, 10, 2)print(net)class类图结构:
使用torch.nn.Sequential() 快速搭建神经网络
net = torch.nn.Sequential( torch.nn.Linear(2, 10), torch.nn.ReLU(), torch.nn.Linear(10, 2))print(net)Sequential图结构
总结:
我们可以发现,使用torch.nn.Sequential会自动加入激励函数, 但是 class类net 中, 激励函数实际上是在 forward() 功能中才被调用的
使用class类中的torch.nn.Module,我们可以根据自己的需求改变传播过程
如果你需要快速构建或者不需要过多的过程,直接使用torch.nn.Sequential吧
补充知识:【PyTorch神经网络】使用Moudle和Sequential搭建神经网络
Module:
init中定义每个神经层的神经元个数,和神经元层数;
forward是继承nn.Moudle中函数,来实现前向反馈(加上激励函数)
# -*- coding: utf-8 -*-# @Time : 2019/11/5 10:43# @Author : Chen# @File : neural_network_impl.py# @Software: PyCharm import torchimport torch.nn.functional as F #datax = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)y = x.pow(2) + 0.2 * torch.rand(x.size()) #第一种搭建方法:Module# 其中,init中定义每个神经层的神经元个数,和神经元层数;# forward是继承nn.Moudle中函数,来实现前向反馈(加上激励函数)class Net(torch.nn.Module): def __init__(self): #继承__init__函数 super(Net, self).__init__() #定义每层的形式 #隐藏层线性输出feature->hidden self.hidden = torch.nn.Linear(1, 10) #输出层线性输出hidden->output self.predict = torch.nn.Linear(10, 1) #实现所有层的连接关系。正向传播输入值,神经网络分析输出值 def forward(self, x): #x首先在隐藏层经过激励函数的计算 x = F.relu(self.hidden(x)) #到输出层给出预测值 x = self.predict(x) return x net = Net()print(net) print('\n\n') #快速搭建:Sequential#模板:net2 = torch.nn.Sequential() net2 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1))print(net2)以上这篇pytorch快速搭建神经网络_Sequential操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式:importtorchimporttorch.nnasnnfirst:classNN(
本文用于利用Pytorch实现神经网络的分类!!!1.训练神经网络分类模型importtorchfromtorch.autogradimportVariable
之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍
本文为大家讲解了pytorch实现CNN卷积神经网络,供大家参考,具体内容如下我对卷积神经网络的一些认识卷积神经网络是时下最为流行的一种深度学习网络,由于其具有
使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰。希望通过实战几个Pytorch的例子,让大家