时间:2021-05-22
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)
SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器。SVM可以通过核方法(kernel method)进行非线性分类,是常见的核学习(kernel learning)方法之一。
SVM被提出于1964年,在二十世纪90年代后得到快速发展并衍生出一系列改进和扩展算法,在人像识别、文本分类等模式识别(pattern recognition)问题中有得到应用。
import numpy as npfrom scipy import io as spiofrom matplotlib import pyplot as pltfrom sklearn import svm def SVM(): '''data1——线性分类''' data1 = spio.loadmat('data1.mat') X = data1['X'] y = data1['y'] y = np.ravel(y) plot_data(X, y) model = svm.SVC(C=1.0, kernel='linear').fit(X, y) # 指定核函数为线性核函数 plot_decisionBoundary(X, y, model) # 画决策边界 '''data2——非线性分类''' data2 = spio.loadmat('data2.mat') X = data2['X'] y = data2['y'] y = np.ravel(y) plt = plot_data(X, y) plt.show() model = svm.SVC(gamma=100).fit(X, y) # gamma为核函数的系数,值越大拟合的越好 plot_decisionBoundary(X, y, model, class_='notLinear') # 画决策边界 # 作图def plot_data(X, y): plt.figure(figsize=(10, 8)) pos = np.where(y == 1) # 找到y=1的位置 neg = np.where(y == 0) # 找到y=0的位置 p1, = plt.plot(np.ravel(X[pos, 0]), np.ravel(X[pos, 1]), 'ro', markersize=8) p2, = plt.plot(np.ravel(X[neg, 0]), np.ravel(X[neg, 1]), 'g^', markersize=8) plt.xlabel("X1") plt.ylabel("X2") plt.legend([p1, p2], ["y==1", "y==0"]) return plt # 画决策边界def plot_decisionBoundary(X, y, model, class_='linear'): plt = plot_data(X, y) # 线性边界 if class_ == 'linear': w = model.coef_ b = model.intercept_ xp = np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), 100) yp = -(w[0, 0] * xp + b) / w[0, 1] plt.plot(xp, yp, 'b-', linewidth=2.0) plt.show() else: # 非线性边界 x_1 = np.transpose(np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), 100).reshape(1, -1)) x_2 = np.transpose(np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), 100).reshape(1, -1)) X1, X2 = np.meshgrid(x_1, x_2) vals = np.zeros(X1.shape) for i in range(X1.shape[1]): this_X = np.hstack((X1[:, i].reshape(-1, 1), X2[:, i].reshape(-1, 1))) vals[:, i] = model.predict(this_X) plt.contour(X1, X2, vals, [0, 1], color='blue') plt.show() if __name__ == "__main__": SVM()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,
libsvm支持向量机算法包的基本使用,此处演示的是支持向量回归机复制代码代码如下:importjava.io.BufferedReader;importjav
在机器学习领域,支持向量机SVM(SupportVectorMachine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。其具有
在机器学习领域,支持向量机SVM(SupportVectorMachine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。其具有