时间:2021-05-22
直接利用numpy读取非数字型的数据集时需要先进行转换,而且python3在处理中文数据方面确实比较蛋疼。最近在学习周志华老师的那本西瓜书,需要没事和一堆西瓜反复较劲,之前进行联系的时候都是利用批量替换先清理一遍数据,不过这样实在是太麻烦了,今天偶然发现可以使用pandas来实现读取中文数据集的功能。
首先分享一下数据集:
编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜 1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是 2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是 3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是 4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是 5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是 6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是 7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是 8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是 9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否 10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否 11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否 12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否 13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否 14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否 15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否 16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否 17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否然后利用pandas将它读进来:
import pandasd = pandas.read_csv(r"d:\data.csv",sep=",")print(d)如果要选取某一行数据,可以使用head方法:
d.head(1)其中参数是行号。
也可以直接取某一列,如:
d['色泽']如果要取某一个数据则可以将两种方法结合使用:
d.head(1)['色泽']以上这篇利用pandas读取中文数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pandas读取各种格式文件:前置工序:importpandasaspdcsv文件读取中文错误处理:utf-8codeccan'tdecode....pd.re
1.读取数据用pandas中的read_csv()函数读取出csv文件中的数据:importpandasaspddf=pd.read_csv("comments
利用Pandas的read_csv函数导入数据文件时,若文件路径或文件名包含中文,会报错,无法导入:importpandasaspddf=pd.read_csv
在Python里面,使用Pandas里面的DataFrame来存放数据的时候想要把数据集进行shuffle会许多的方法,本文介绍两种比较常用而且简单的方法。应用
之前有群友反应同事给了他一个几百MB的sql脚本,导入数据库再从数据库读取数据有点慢,想了解下有没有可以直接读取sql脚本到pandas的方法。解析sql脚本文