时间:2021-05-22
周五的时候计算出来一条线路,但是计算出来的只是类似与
0->10->19->2->..0
这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。
&esp; 当然是考虑用matplotlib了,
导入相关的库
import matplotlib.pyplot as pltimport numpyimport matplotlib.colors as colorsimport matplotlib.cm as cmx后面两个主要是用于处理颜色的。
准备数据
_locations = [ (4, 4), # depot (4, 4), # unload depot_prime (4, 4), # unload depot_second (4, 4), # unload depot_fourth (4, 4), # unload depot_fourth (4, 4), # unload depot_fifth (2, 0), (8, 0), # locations to visit (0, 1), (1, 1), (5, 2), (7, 2), (3, 3), (6, 3), (5, 5), (8, 5), (1, 6), (2, 6), (3, 7), (6, 7), (0, 8), (7, 8) ]画图
plt.figure(figsize=(10, 10))p1 = [l[0] for l in _locations]p2 = [l[1] for l in _locations]plt.plot(p1[:6], p2[:6], 'g*', ms=20, label='depot')plt.plot(p1[6:], p2[6:], 'ro', ms=15, label='customer')plt.grid(True)plt.legend(loc='lower left')way = [[0, 12, 18, 17, 16, 4, 14, 10, 11, 13, 5], [0, 6, 9, 8, 20, 3], [0, 19, 21, 15, 7, 2]] # cmap = plt.cm.jetcNorm = colors.Normalize(vmin=0, vmax=len(way))scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)for k in range(0, len(way)): way0 = way[k] colorVal = scalarMap.to_rgba(k) for i in range(0, len(way0)-1): start = _locations[way0[i]] end = _locations[way0[i+1]]# plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True,# head_width=0.2, head_length=0.3, fc='k', ec='k', lw=2, ls=lineStyle[k], color='red') plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True, head_width=0.2, lw=2, color=colorVal)plt.show()cmap = plt.cm.jetcNorm = colors.Normalize(vmin=0, vmax=len(way))scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)cmap可以理解为颜色库,cNorm设置颜色的范围,有几条线路就设置几种颜色,scalarMap颜色生成完毕。最后在绘图的时候,根据索引获得相应的颜色就可以了。
结果如下:
补充知识:Python包matplotlib绘图--如何标注某点--附代码
# -*- coding: utf-8 -*-import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npplt.style.use('classic')plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示x=np.array([1,2,3,4,5,6,7,8])y1=np.array([3,5,35,300,800,600,1200,4000])y2=np.array([8,14,94,703,1300,1660,2801,12768])fig1 = plt.figure()ax = plt.axes()ax.plot(x, y2,label='时间/秒')ax.set(xlabel='目标函数个数', ylabel='程序运行时间',title='多目标收敛速度')plt.hlines(703, 0, 4, colors='r', linestyle="--")plt.text(0, 703, "703")plt.hlines(1300, 0, 5, colors='g', linestyle="--")plt.text(0, 1300, "1300")# annotate plt.annotate("703秒", (4,703), xycoords='data', xytext=(4.2, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("94秒", (3,94), xycoords='data', xytext=(3.5, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("14秒", (2,14), xycoords='data', xytext=(2.5, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("8秒", (1,8), xycoords='data', xytext=(1.5, 2000), arrowprops=dict(arrowstyle='->')) plt.legend()plt.show()fig1.savefig('my_figure1.png')import numpy as npfrom matplotlib import pyplot as pltfrom matplotlib.path import Pathfrom matplotlib.patches import PathPatch# Use seaborn to change the default graphics to something nicerimport seaborn as sns# And set a nice color palettesns.set_color_codes('deep')# Create the plot objectfig, ax = plt.subplots(figsize=(5, 4))x = np.linspace(0, 1000)# Add finishing constraint: x2 <= 100/2 - x1/2plt.plot(x, 50/4 - 3*x/4, linewidth=3, label='First constraint')plt.fill_between(x, 0, 100/2 - x/2, alpha=0.1)# Add carpentry constraint: x2 <= 80 - x1plt.plot(x, 30 - 2*x, linewidth=3, label='Second constraint')plt.fill_between(x, 0, 100 - 2*x, alpha=0.1)# Add non-negativity constraintsplt.plot(np.zeros_like(x), x, linewidth=3, label='$x$ Sign restriction')plt.plot(x, np.zeros_like(x), linewidth=3, label='$y$ Sign restriction')#====================================================# This part is different from giapetto_feasible.py# Plot the possible (x1, x2) pairspairs = [(x, y) for x in np.arange(101) for y in np.arange(101) if (300*x + 400*y) <= 5000 and (200*x + 100*y) <= 3000]# Split these into our variableschairs, tables = np.hsplit(np.array(pairs), 2)# Caculate the objective function at each pairz =8*chairs + 9*tables# Plot the resultsplt.scatter(chairs, tables, c=z, cmap='jet', edgecolor='gray', alpha=0.5, label='Profit at each point', zorder=3)# Colorbarcb = plt.colorbar()cb.set_label('Profit Colormap ($)')#====================================================# Labels and stuffplt.xlabel('Package A')plt.ylabel('Package B')plt.xlim(-0.5, 20)plt.ylim(-0.5, 20)plt.legend()fig01 = plt.figure()plt.show()以上这篇使用Matplotlib绘制不同颜色的带箭头的线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在matplotlib中,errorbar方法用于绘制带误差线的折线图,基本用法如下plt.errorbar(x=[1,2,3,4],y=[1,2,3,4],y
本文实例讲述了Python使用matplotlib绘制动画的方法。分享给大家供大家参考。具体分析如下:matplotlib从1.1.0版本以后就开始支持绘制动画
Matplotlib也可以绘制3D图像,与二维图像不同的是,绘制三维图像主要通过mplot3d模块实现。但是,使用Matplotlib绘制三维图像实际上是在二维
本文实例讲述了Python使用matplotlib的pie函数绘制饼状图功能。分享给大家供大家参考,具体如下:matplotlib具体安装方法可参考前面一篇ht
在CAD绘图里面有时候会用到箭头的绘制,对于箭头呢,我们可以利用直线进行绘制,但是绘制出来的箭头不规则不好看。下面介绍一下使用的绘制箭头的方法。 直线绘制