python实现时间序列自相关图(acf)、偏自相关图(pacf)教程

时间:2021-05-22

自相关图是一个平面二维坐标悬垂线图。横坐标表示延迟阶数,纵坐标表示自相关系数

偏自相关图跟自相关图类似, 横坐标表示延迟阶数,纵坐标表示偏自相关系数

自相关图与偏自相关图的python代码实现:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

plot_acf(b.salesVolume)
plot_pacf(b.salesVolume)

可以看到,这个数据是偏自相关系数拖尾,自相关系数截尾的数据

补充知识:python 数据相关性可视化

话不多说直接上代码

import matplotlib.pyplot as pltimport seaborn as snsdata = test_feature.corr() #test_feature => pandas.DataFrame#sns.heatmap(data)plt.show()

效果图

以上这篇python实现时间序列自相关图(acf)、偏自相关图(pacf)教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章