时间:2021-05-22
在初步了解Python多进程之后,我们可以继续探索multiprocessing包中更加高级的工具。这些工具可以让我们更加便利地实现多进程。
进程池
进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。
“三个进程的进程池”
比如下面的程序:
复制代码 代码如下:
import multiprocessing as mul
def f(x):
return x**2
pool = mul.Pool(5)
rel = pool.map(f,[1,2,3,4,5,6,7,8,9,10])
print(rel)
我们创建了一个容许5个进程的进程池 (Process Pool) 。Pool运行的每个进程都执行f()函数。我们利用map()方法,将f()函数作用到表的每个元素上。这与built-in的map()函数类似,只是这里用5个进程并行处理。如果进程运行结束后,还有需要处理的元素,那么的进程会被用于重新运行f()函数。除了map()方法外,Pool还有下面的常用方法。
apply_async(func,args) 从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。
close() 进程池不再创建新的进程
join() wait进程池中的全部进程。必须对Pool先调用close()方法才能join。
练习
有下面一个文件download.txt。
复制代码 代码如下:
使用包含3个进程的进程池下载文件中网站的首页。(你可以使用subprocess调用wget或者curl等下载工具执行具体的下载任务)
共享资源
我们在Python多进程初步已经提到,我们应该尽量避免多进程共享资源。多进程共享资源必然会带来进程间相互竞争。而这种竞争又会造成race condition,我们的结果有可能被竞争的不确定性所影响。但如果需要,我们依然可以通过共享内存和Manager对象这么做。
共享“资源”
共享内存
在Linux进程间通信中,我们已经讲述了共享内存(shared memory)的原理,这里给出用Python实现的例子:
复制代码 代码如下:
# modified from official documentation
import multiprocessing
def f(n, a):
n.value = 3.14
a[0] = 5
num = multiprocessing.Value('d', 0.0)
arr = multiprocessing.Array('i', range(10))
p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join()
print num.value
print arr[:]
这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。
Manager
Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。下面的例子中,我们对Manager的使用类似于shared memory,但可以共享更丰富的对象类型。
复制代码 代码如下:
import multiprocessing
def f(x, arr, l):
x.value = 3.14
arr[0] = 5
l.append('Hello')
server = multiprocessing.Manager()
x = server.Value('d', 0.0)
arr = server.Array('i', range(10))
l = server.list()
proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join()
print(x.value)
print(arr)
print(l)
Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。
我们在这里不深入讲解Manager在远程情况下的应用。有机会的话,会在网络应用中进一步探索。
总结
Pool
Shared memory, Manager
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading
说明Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码。从Python3.2开始,标准库为我们提供
想要充分利用多核CPU资源,Python中大部分情况下都需要使用多进程,Python中提供了multiprocessing这个包实现多进程。multiproce
比较好奇python对于多进程中copyonwrite机制的实际使用情况。目前从实验结果来看,python使用multiprocessing来创建多进程时,无论
本文实例讲述了python基于multiprocessing的多进程创建方法。分享给大家供大家参考。具体如下:importmultiprocessingimpo