时间:2021-05-22
在对模型训练时,为了让模型尽快收敛,一件常做的事情就是对数据进行预处理。
这里通过使用sklearn.preprocess模块进行处理。
一、标准化和归一化的区别
归一化其实就是标准化的一种方式,只不过归一化是将数据映射到了[0,1]这个区间中。
标准化则是将数据按照比例缩放,使之放到一个特定区间中。标准化后的数据的均值=0,标准差=1,因而标准化的数据可正可负。
二、使用sklearn进行标准化和标准化还原
原理:
即先求出全部数据的均值和方差,再进行计算。
最后的结果均值为0,方差是1,从公式就可以看出。
但是当原始数据并不符合高斯分布的话,标准化后的数据效果并不好。
导入模块
from sklearn.preprocessing import StandardScalerfrom sklearn.preprocessing import MinMaxScalerfrom matplotlib import gridspecimport numpy as npimport matplotlib.pyplot as plt通过生成随机点可以对比出标准化前后的数据分布形状并没有发生变化,只是尺度上缩小了。
cps = np.random.random_integers(0, 100, (100, 2)) ss = StandardScaler()std_cps = ss.fit_transform(cps) gs = gridspec.GridSpec(5,5)fig = plt.figure()ax1 = fig.add_subplot(gs[0:2, 1:4])ax2 = fig.add_subplot(gs[3:5, 1:4]) ax1.scatter(cps[:, 0], cps[:, 1])ax2.scatter(std_cps[:, 0], std_cps[:, 1]) plt.show()sklearn.preprocess.StandardScaler的使用:
先是创建对象,然后调用fit_transform()方法,需要传入一个如下格式的参数作为训练集。
X : numpy array of shape [n_samples,n_features]Training set.data = np.random.uniform(0, 100, 10)[:, np.newaxis]ss = StandardScaler()std_data = ss.fit_transform(data)origin_data = ss.inverse_transform(std_data)print('data is ',data)print('after standard ',std_data)print('after inverse ',origin_data)print('after standard mean and std is ',np.mean(std_data), np.std(std_data))通过invers_tainsform()方法就可以得到原来的数据。
打印结果如下:
可以看到生成的数据的标准差是1,均值接近0。
data is [[15.72836992] [62.0709697 ] [94.85738359] [98.37108557] [ 0.16131774] [23.85445883] [26.40359246] [95.68204855] [77.69245742] [62.4002485 ]]after standard [[-1.15085842] [ 0.18269178] [ 1.12615048] [ 1.22726043] [-1.59881442] [-0.91702287] [-0.84366924] [ 1.14988096] [ 0.63221421] [ 0.19216708]]after inverse [[15.72836992] [62.0709697 ] [94.85738359] [98.37108557] [ 0.16131774] [23.85445883] [26.40359246] [95.68204855] [77.69245742] [62.4002485 ]]after standard mean and std is -1.8041124150158794e-16 1.0三、使用sklearn进行数据的归一化和归一化还原
原理:
从上式可以看出归一化的结果跟数据的最大值最小值有关。
使用时类似上面的标准化
data = np.random.uniform(0, 100, 10)[:, np.newaxis]mm = MinMaxScaler()mm_data = mm.fit_transform(data)origin_data = mm.inverse_transform(mm_data)print('data is ',data)print('after Min Max ',mm_data)print('origin data is ',origin_data)结果:
G:\Anaconda\python.exe G:/python/DRL/DRL_test/DRL_ALL/Grammar.pydata is [[12.19502214] [86.49880021] [53.10501326] [82.30089405] [44.46306969] [14.51448347] [54.59806596] [87.87501465] [64.35007178] [ 4.96199642]]after Min Max [[0.08723631] [0.98340171] [0.58064485] [0.93277147] [0.47641582] [0.11521094] [0.59865231] [1. ] [0.71626961] [0. ]]origin data is [[12.19502214] [86.49880021] [53.10501326] [82.30089405] [44.46306969] [14.51448347] [54.59806596] [87.87501465] [64.35007178] [ 4.96199642]] Process finished with exit code 0其他标准化的方法:
上面的标准化和归一化都有一个缺点就是每当来一个新的数据的时候就要重新计算所有的点。
因而当数据是动态的时候可以使用下面的几种计算方法:
1、arctan反正切函数标准化:
2、ln函数标准化
以上这篇使用sklearn进行对数据标准化、归一化以及将数据还原的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0,1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系“压缩
本文实例讲述了Python数据预处理之数据规范化。分享给大家供大家参考,具体如下:数据规范化为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)
数据归一化:数据的标准化是将数据按比例缩放,使之落入一个小的特定区间,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
Softmax回归函数是用于将分类结果归一化。但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况。
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进