Python实现ElGamal加密算法的示例代码

时间:2021-05-22

在密码学中,ElGamal加密算法是一个基于迪菲-赫尔曼密钥交换的非对称加密算法。它在1985年由塔希尔·盖莫尔提出。GnuPG和PGP等很多密码学系统中都应用到了ElGamal算法。

ElGamal加密算法可以定义在任何循环群G上。它的安全性取决于G上的离散对数难题。

使用Python实现ElGamal加密算法,完成加密解密过程,明文使用的是125位数字(1000比特)。

代码如下:

import randomfrom math import powa = random.randint(2, 10) #产生小于p的随机常数adef gcd(a, b): if a < b: return gcd(b, a) elif a % b == 0: return b; else: return gcd(b, a % b) # Generating large random numbersdef gen_key(q): key = random.randint(pow(10, 20), q) while gcd(q, key) != 1: key = random.randint(pow(10, 20), q) return key# Modular exponentiationdef power(a, b, c): x = 1 y = a while b > 0: if b % 2 == 0: x = (x * y) % c; y = (y * y) % c b = int(b / 2) return x % c# Asymmetric encryptiondef encrypt(msg, p, h, r): en_msg = [] b = gen_key(p) # 得b K = power(h, b, p)#K=(Sa)^b mod p C1 = power(r, b, p) #C1=Sb=r^b mod p for i in range(0, len(msg)): en_msg.append(msg[i]) print("C1 : ", C1) # print("(Sa)^b mod p used : ", K) for i in range(0, len(en_msg)): en_msg[i] = K * ord(en_msg[i]) print("C2 : ", en_msg) return en_msg, C1def decrypt(C2, C1, a, p): dr_msg = [] h = power(C1, a, p) for i in range(0, len(C2)): dr_msg.append(chr(int(C2[i] / h))) return dr_msg# Driver codedef main(): msg = '01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234' # 共125位数字,1000bit print("明文 :", msg) p = random.randint(pow(10, 20), pow(10, 50))# 获得大素数q r = random.randint(2, p)#得r a = gen_key(p) # Private key for receiver h = power(r, a, p) C2, C1 = encrypt(msg, p, h, r) dr_msg = decrypt(C2, C1, a, p) dmsg = ''.join(dr_msg) print("解密后文 :", dmsg);if __name__ == '__main__': main()

总结

到此这篇关于Python实现ElGamal加密算法的示例代码的文章就介绍到这了,更多相关python ElGamal加密算法内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章