时间:2021-05-22
在目标检测的模型训练中, 我们通常都会有一个特征提取网络backbone, 例如YOLO使用的darknet SSD使用的VGG-16。
为了达到比较好的训练效果, 往往会加载预训练的backbone模型参数, 然后在此基础上训练检测网络, 并对backbone进行微调, 这时候就需要为backbone设置一个较小的lr。
class net(torch.nn.Module): def __init__(self): super(net, self).__init__() # backbone self.backbone = ... # detect self....在设置optimizer时, 只需要参数分为两个部分, 并分别给定不同的学习率lr。
base_params = list(map(id, net.backbone.parameters()))logits_params = filter(lambda p: id(p) not in base_params, net.parameters())params = [ {"params": logits_params, "lr": config.lr}, {"params": net.backbone.parameters(), "lr": config.backbone_lr},]optimizer = torch.optim.SGD(params, momentum=config.momentum, weight_decay=config.weight_decay)以上这篇pytorch 实现模型不同层设置不同的学习率方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
如下所示:#tensorflow中从ckpt文件中恢复指定的层或将指定的层不进行恢复:#tensorflow中不同的layer指定不同的学习率withtf.Gr
pytorch安装注:在训练模型的时候,有时候可能需要不同版本的torch和torchvision,所以需要配置不同的环境。anconda和pycharm自行安
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。假设构建一个网络模型如下:卷积层--》Relu层--》池化层--》全连接层--》Relu层
1Pytorch以ONNX方式保存模型defsaveONNX(model,filepath):'''保存ONNX模型:parammodel:神经网络模型:par
我们经常会看到后缀名为.pt,.pth,.pkl的pytorch模型文件,这几种模型文件在格式上有什么区别吗?其实它们并不是在格式上有区别,只是后缀不同而已(仅