使用Python绘制图表大全总结

时间:2021-05-22

在使用Python绘制图表前,我们需要先安装两个库文件numpy和matplotlib。

Numpy是Python开源的数值计算扩展,可用来存储和处理大型矩阵,比Python自身数据结构要高效;matplotlib是一个Python的图像框架,使用其绘制出来的图形效果和MATLAB下绘制的图形类似。

下面我通过一些简单的代码介绍如何使用 Python绘图。

一、图形绘制

直方图

importmatplotlib.pyplotaspltimportnumpyasnpmu=100sigma=20x=mu+sigma*np.random.randn(20000)# 样本数量plt.hist(x,bins=100,color='green',normed=True)# bins显示有几个直方,normed是否对数据进行标准化plt.show()

条形图

importmatplotlib.pyplotaspltimportnumpyasnpy=[20,10,30,25,15]index=np.arange(5)plt.bar(left=index,height=y,color='green',width=0.5)plt.show()

折线图

importmatplotlib.pyplotaspltimportnumpyasnpx=np.linspace(-10,10,100)y=x**3plt.plot(x,y,linestyle='--',color='green',marker='<')plt.show()

散点图

importmatplotlib.pyplotaspltimportnumpyasnpx=np.random.randn(1000)y=x+np.random.randn(1000)*0.5plt.scatter(x,y,s=5,marker='<')# s表示面积,marker表示图形plt.show()

饼状图

importmatplotlib.pyplotaspltimportnumpyasnplabels='A','B','C','D'fracs=[15,30,45,10]plt.axes(aspect=1)#使x y轴比例相同explode=[0,0.05,0,0]# 突出某一部分区域plt.pie(x=fracs,labels=labels,autopct='%.0f%%',explode=explode)#autopct显示百分比plt.show()

箱形图

主要用于显示数据的分散情况。图形分为上边缘、上四分位数、中位数、下四分位数、下边缘。外面的点时异常值

importmatplotlib.pyplotaspltimportnumpyasnpnp.random.seed(100)data=np.random.normal(size=(1000,4),loc=0,scale=1)labels=['A','B','C','D']plt.boxplot(data,labels=labels)plt.show()

二、图像的调整

1、23种点形状

"."point","pixel"o"circle"v"triangle_down"^"triangle_up"<"triangle_left">"triangle_right"1"tri_down"2"tri_up"3"tri_left"4"tri_right"8"octagon"s"square"p"pentagon"*"star"h"hexagon1"H"hexagon2"+"plus"x"x"D"diamond"d"thin_diamond

2、8种內建默认颜色的缩写

b:blueg:greenr:redc:cyanm:magentay:yellowk:blackw:white

3、4种线性

- 实线 --虚线 -.点划线 :点线

4、一张图上绘制子图

importmatplotlib.pyplotaspltimportnumpyasnpx=np.arange(1,100)plt.subplot(221)#2行2列第1个图plt.plot(x,x)plt.subplot(222)plt.plot(x,-x)plt.subplot(223)plt.plot(x,x*x)plt.subplot(224)plt.plot(x,np.log(x))plt.show()

5、生成网格

importmatplotlib.pyplotaspltimportnumpyasnpy=np.arange(1,5)plt.plot(y,y*2)plt.grid(True,color='g',linestyle='--',linewidth='1')plt.show()

6、生成图例

importmatplotlib.pyplotaspltimportnumpyasnpx=np.arange(1,11,1)plt.plot(x,x*2)plt.plot(x,x*3)plt.plot(x,x*4)plt.legend(['Normal','Fast','Faster'])plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章