时间:2021-05-22
在使用python做大数据和机器学习处理过程中,首先需要读取hdfs数据,对于常用格式数据一般比较容易读取,parquet略微特殊。从hdfs上使用python获取parquet格式数据的方法(当然也可以先把文件拉到本地再读取也可以):
1、安装anaconda环境。
2、安装hdfs3。
conda install hdfs3
3、安装fastparquet。
conda install fastparquet
4、安装python-snappy。
conda install python-snappy
5、读取文件
##namenode mode:from hdfs3 import HDFileSystemfrom fastparquet import ParquetFile hdfs = HDFileSystem(host=IP, port=8020)sc = hdfs.open pf = ParquetFile(filename, open_with=sc)df = pf.to_pandas() ##返回pandas的DataFrame类型 ##HA mode:from hdfs3 import HDFileSystemfrom fastparquet import ParquetFile host = "nameservice1"conf = { "dfs.nameservices":"nameservice1", ......}hdfs = HDFileSystem(host = host, pars = conf)......python访问HDFS HA的三种方法
python访问hdfs常用的包有三个,如下:
1、hdfs3
其实从安装便捷性和使用上来说,并不推荐hdfs3,因为他的系统依赖和网络要求较高,但是某些情况下使用hdfs3会比较方便,官网资料点这里。如上面介绍,IP直接访问namenode:
from hdfs3 import HDFileSystemhdfs = HDFileSystem(host=namenode, port=8020)hdfs.ls('/tmp')HA访问:
host = "nameservice1"conf = {"dfs.nameservices": "nameservice1", "dfs.ha.namenodes.nameservice1": "namenode113,namenode188", "dfs.namenode.rpc-address.nameservice1.namenode113": "hostname_of_server1:8020", "dfs.namenode.rpc-address.nameservice1.namenode188": "hostname_of_server2:8020", "dfs.namenode.http-address.nameservice1.namenode188": "hostname_of_server1:50070", "dfs.namenode.http-address.nameservice1.namenode188": "hostname_of_server2:50070", "hadoop.security.authentication": "kerberos"}fs = HDFileSystem(host=host, pars=conf) ##或者下面这种配置host = "ns1"conf = { "dfs.nameservices":"ns1", "dfs.ha.namenodes.ns1":"namenode122,namenode115", "dfs.namenode.rpc-address.ns1.namenode122":"nnlab01:8020", "dfs.namenode.servicerpc-address.ns1.namenode122":"nnlab01:8022", "dfs.namenode.http-address.ns1.namenode122":"nnlab01:50070", "dfs.namenode.https-address.ns1.namenode122":"nnlab01:50470", "dfs.namenode.rpc-address.ns1.namenode115":"nnlab02:8020", "dfs.namenode.servicerpc-address.ns1.namenode115":"nnlab02:8022", "dfs.namenode.http-address.ns1.namenode115":"nnlab02:50070", "dfs.namenode.https-address.ns1.namenode115":"nnlab02:50470",}hdfs = HDFileSystem(host = host, pars = conf)2、hdfs
这种方法在使用的时候配置比较简单,官网资料也比较丰富,但是需要注意的是该API可以模拟用户访问,权限较大。IP直接访问:
import hdfs
client = hdfs.client.InsecureClient(url="http://namenode:50070", user="hdfs")
HA访问:
import hdfs
client = hdfs.client.InsecureClient(url="http://namenode1:50070;http://namenode2:50070", user="hdfs")
3、pyhdfs
安装命令:pip install PyHDFS
官网地址,直接访问:
import pyhdfs
client = pyhdfs.HdfsClient(hosts="namenode:50070",user_name="hdfs")
HA访问
import pyhdfs
client = pyhdfs.HdfsClient(hosts=["namenode1:50070","namenode2:50070"],user_name="hdfs")
补充知识:python spark中parquet文件写到hdfs,同时避免太多的小文件(block小文件合并)
在pyspark中,使用数据框的文件写出函数write.parquet经常会生成太多的小文件,例如申请了100个block,而每个block中的结果
只有几百K,这在机器学习算法的结果输出中经常出现,这是一种很大的资源浪费,那么如何同时避免太多的小文件(block小文件合并)?
其实有一种简单方法,该方法需要你对输出结果的数据量有个大概估计,然后使用Dataframe中的coalesce函数来指定输出的block数量
即可,具体使用代码如下:
df.coalesce(2).write.parquet(path,mode)
这里df是指你要写出的数据框,coalesce(2)指定了写到2个block中,一个block默认128M,path是你的写出路径,mode是写出模式,常用的是
"overwrite"和"append"。
以上这篇python读取hdfs上的parquet文件方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pipinstallhdfspython读取hdfs目录或文件importhdfsclient=hdfs.Client("http://10.10.1.4:50
hdfs文件操作操作示例,包括上传文件到HDFS上、从HDFS上下载文件和删除HDFS上的文件,大家参考使用吧复制代码代码如下:importorg.apache
hdfs工作原理如下: 1、客户端通过调用FileSystem对象的open括号来读取希望打开的文件。对于HDFS来说,这个对象是分布式文件系统的一个实例。
之前实现了使用流来讲http和ftp的文件下载到本地,也实现了将本地文件上传到hdfs上,那现在就可以做到将ftp和http的文件转移到hdfs上了,而不用先将
python3读取python2打包的npy文件会报错,原因是编码方式不同,所以只要在读取的时候加上编码方式即可。解决方法docs_train=np.load(