时间:2021-05-22
在使用pytorch的时候,经常会涉及到两种数据格式tensor和ndarray之间的转换,这里总结一下两种格式的转换:
1. tensor cpu 和tensor gpu之间的转化:
tensor cpu 转为tensor gpu:
tensor_gpu = tensor_cpu.cuda()
tensor gpu 转为tensor cpu:
tensor_cpu = tensor_gpu.cuda()
2. tensor cpu 和 ndarray 之间的转化:
tensor cpu 转为 ndarray:
>>> np_array= tensor_cpu.numpy()array([[1., 1.], [1., 1.]], dtype=float32)ndarray 转为 tensor cpu:
注:ndarray的默认精度为64位,Tensor的默认精度位32位,所以通过Tensor直接转换的话,精度会转换到32位,若通过from_numpy的方式,则会保留原来64位精度
3. tensor cpu 和 scalar 之间的转化:
如果只是训练了一个简单的分类网络,对单个样本的输出会是一个标量(scalar)
>>>torch.ones((1,1)).item()1.0通过一张图说明三者的转化方式:
到此这篇关于详解pytorch tensor和ndarray转换相关总结的文章就介绍到这了,更多相关pytorch tensor和ndarray转换内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
numpy中的ndarray转化成pytorch中的tensor:torch.from_numpy()pytorch中的tensor转化成numpy中的ndar
PyTorch基础入门一:PyTorch基本数据类型1)Tensor(张量)Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一
传统使用opencv自带的swapaxes进行转换,然后使用pytorch的from_numpy转为tensor例如:img=img.swapaxes(1,2)
在pytorch中,Tensor是以引用的形式存在的,故而并不能直接像python交换数据那样a=torch.Tensor(3,4)a[0],a[1]=a[1]
一般来说,pytorch的Parameter是一个tensor,但是跟通常意义上的tensor有些不一样1)通常意义上的tensor仅仅是数据2)而Parame