Pytorch中的variable, tensor与numpy相互转化的方法

时间:2021-05-22

在使用pytorch作为深度学习的框架时,经常会遇到变量variable、张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法进行实现。

1.加载需要用到的模块

import torchfrom torch.autograd import Variableimport matplotlib.pyplot as pltimport matplotlib.image as mpimg

2.显示图片与图片中的一部分区域

test_img = mpimg.imread('example1.jpg')i_x = 20i_y = 85sub_img = test_img[i_y:i_y + 100,i_x:i_x + 100,:] #numpy类型

3.将numpy矩阵转换为Tensor张量

sub_ts = torch.from_numpy(sub_img) #sub_img为numpy类型

4.将Tensor张量转化为numpy矩阵

sub_np1 = sub_ts.numpy() #sub_ts为tensor张量

5.将numpy转换为Variable

sub_va = Variable(torch.from_numpy(sub_img))

6.将Variable张量转化为numpy

sub_np2 = sub_va.data.numpy()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章