时间:2021-05-22
在用tensorflow实现一些模型的时候,有时候我们在运行程序的时候,会发现程序占用的内存在不断增长。最后内存溢出,程序被kill掉了。
这个问题,其实有两个可能性。一个是比较常见,同时也是很难发现的。这个问题的解决,需要我们知道tensorflow在构图的时候,是没有所谓的临时变量的,只要有operator。那么tensorflow就会在构建的图中增加这个operator所代表的节点。所以,在运行程序的过程中,内存不断增长的原因就是在模型训练迭代的过程中,tensorflow一直在帮你增加图的节点。导致内存占用越来越多。
那么什么情况下就会像上面说的那样呢?我们举个例子:
import tensorflow as tfx = tf.Variable(tf.constant(1))y = tf.constant(2)sess = tf.Session()sess.run(tf.global_variables_initializer())while True: print(sess.run(x+y))如果你运行上面这段代码,会发现在运行的过程中,内存占用越来越大。原因就在于sess.run(x+y)这个语句。我们知道在tensorflow中,所有的操作都是graph的节点。而在迭代的过程中,x+y这个operator(操作)是匿名的,所以它会不断地重复,在graph中创建节点,导致内存占用越来越大。
所以要对上面的代码进行修改:
z = x+ywhile True: print(sess.run(z))这样就不会出现问题了。
上面只是一个简单的例子,我们可以很快发现问题。但是有时候我们的模型比较复杂,很难判断是否在迭代的过程中一直在增加节点。那怎么办呢?
其实在tensorflow里面有个函数叫做:
sess.graph.finalize()
只要每一次构图完成后,调用这个函数。然后运行程序,如果你的程序在运行的过程中还一直新建节点,这个函数就会检测到,然后就会报错。这样你就知道你的程序中一定有不合理的地方。
另一个导致内存暴涨的原因是,数据的加载问题。tensorflow现在有一个API接口,tf.data.Dataset 。这个接口里面有个函数叫做cache(filename)。cache函数的作用是将加载进来的数据存放到filename指定的地方。但是如果我们没有指定filename,数据就是一直存储在内存中。所以,随着迭代次数的增加,存储在内存中的数据越来越多,就会导致内存暴涨。所以要么不要使用这个函数,要么就要记得添加filename参数。
以上这篇浅谈tensorflow之内存暴涨问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
浅谈java内存模型不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。其实java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安
使用tensorflow进行编程时,经常遇到操作不当,带来的内存泄露问题,这里有一个可以帮助debug问题所在方法:https://stackoverflow.
TensorFlow训练时,遇到内存不断增长,最终导致内存不足,进程被杀死。在这里我不准备对造成这一现象的所有原因进行探讨,只是记录一下我在项目中遇到的这一问题
默认情况下,TensorFlow会映射进程可见的所有GPU的几乎所有GPU内存(取决于CUDA_VISIBLE_DEVICES)。通过减少内存碎片,可以更有效地
问题描述:为了把之前的CPU版本的tensorflow卸载,换成GPU版本的tensorflow,经历了一番折腾。BUG1Couldnotinstallpack