时间:2021-05-22
因为工作中会经常遇到不同采样率的声音文件的问题,特意写了一下重采样的程序。
原理就是把采样点转换到时间刻度之后再进行插值,经过测试,是没有问题的。
#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 17-7-21 下午2:32# @Author : Lei.Jinggui# @Site : http://blog.csdn.net/lccever# @File : Resample.py# @Software: PyCharm Community Edition# @contact: lccever@126.comimport numpy as npdef Resample(input_signal,src_fs,tar_fs): ''' :param input_signal:输入信号 :param src_fs:输入信号采样率 :param tar_fs:输出信号采样率 :return:输出信号 ''' dtype = input_signal.dtype audio_len = len(input_signal) audio_time_max = 1.0*(audio_len-1) / src_fs src_time = 1.0 * np.linspace(0,audio_len,audio_len) / src_fs tar_time = 1.0 * np.linspace(0,np.int(audio_time_max*tar_fs),np.int(audio_time_max*tar_fs)) / tar_fs output_signal = np.interp(tar_time,src_time,input_signal).astype(dtype) return output_signalif __name__ == '__main__': import wave import pyaudio def playSound(audio_data_short, framerate=16000, channels=1): preply = pyaudio.PyAudio() # 播放声音 streamreply = preply.open(format=pyaudio.paInt16, channels=channels, rate=framerate, output=True) data = audio_data_short.tostring() streamreply.write(data) streamreply.close() preply.terminate() wave_file = 'test.wav' audio_file = wave.open(wave_file, 'rb') audio_data = audio_file.readframes(audio_file.getnframes()) audio_data_short = np.fromstring(audio_data, np.short) src_fs = audio_file.getframerate() src_chanels = audio_file.getnchannels() if src_chanels > 1: audio_data_short = audio_data_short[::src_chanels] tar_fs = np.int(src_fs * 0.5) playSound(audio_data_short,framerate=src_fs) audio_data_short0 = Resample(audio_data_short,src_fs,tar_fs) playSound(audio_data_short0,framerate=tar_fs)补充知识:Python 多线程的退出/停止的一种是实现思路
在使用多线程的过程中,我们知道,python的线程是没有stop/terminate方法的,也就是说它被启动后,你无法再主动去退出它,除非主进程退出了,注意,是主进程,不是线程的父进程.
一个比较合理的方式就是把原因需要放到threading.Thread的target中的线程函数,改写到一个继承类中,下面是一个实现例子
import threadingimport timeimport os # 原本需要用来启动的无线循环的函数def print_thread(): pid = os.getpid() counts = 0 while True: print(f'threading pid: {pid} ran: {counts:04d} s') counts += 1 time.sleep(1) # 把函数放到改写到类的run方法中,便可以通过调用类方法,实现线程的终止class StoppableThread(threading.Thread): def __init__(self, daemon=None): super(StoppableThread, self).__init__(daemon=daemon) self.__is_running = True self.daemon = daemon def terminate(self): self.__is_running = False def run(self): pid = os.getpid() counts = 0 while self.__is_running: print(f'threading running: {pid} ran: {counts:04d} s') counts += 1 time.sleep(1) def call_thread(): thread = StoppableThread() thread.daemon = True thread.start() pid = os.getpid() counts = 0 for i in range(5): print(f'0 call threading pid: {pid} ran: {counts:04d} s') counts += 2 time.sleep(2) # 主动把线程退出 thread.terminate() if __name__ == '__main__': call_thread() print(f'==========call_thread finish===========') counts = 0 for i in range(5): counts += 1 time.sleep(1) print(f'main thread:{counts:04d} s')以上这篇基于Python 的语音重采样函数解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python日期的范围、频率、重采样以及频率转换pandas有一整套的标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围的工具。生成指定日期范围的范
resample()resample()进行重采样。重采样(Resampling)指的是把时间序列的频度变为另一个频度的过程。把高频度的数据变为低频度叫做降采样
百度语音对上传的语音要求目前必须是单声道,16K采样率,采样深度可以是16位或者8位的PCM编码。其他编码输出的语音识别不出来。语音的处理技巧:录制为MP3的语
Pandas提供了便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:降采样:时间粒度变大。例如,原来是按天统计的数据,现在变成按周统
当遇到一个模板标签(templatetag)时,模板解析器就会把标签包含的内容,以及模板解析器自己作为参数调用一个python函数。这个函数负责返回一个和当前模