时间:2021-05-22
用python写了一个简单版本的textrank,实现提取关键词的功能。
import numpy as np import jieba import jieba.posseg as pseg class TextRank(object): def __init__(self, sentence, window, alpha, iternum): self.sentence = sentence self.window = window self.alpha = alpha self.edge_dict = {} #记录节点的边连接字典 self.iternum = iternum#迭代次数 #对句子进行分词 def cutSentence(self): jieba.load_userdict('user_dict.txt') tag_filter = ['a','d','n','v'] seg_result = pseg.cut(self.sentence) self.word_list = [s.word for s in seg_result if s.flag in tag_filter] print(self.word_list) #根据窗口,构建每个节点的相邻节点,返回边的集合 def createNodes(self): tmp_list = [] word_list_len = len(self.word_list) for index, word in enumerate(self.word_list): if word not in self.edge_dict.keys(): tmp_list.append(word) tmp_set = set() left = index - self.window + 1#窗口左边界 right = index + self.window#窗口右边界 if left < 0: left = 0 if right >= word_list_len: right = word_list_len for i in range(left, right): if i == index: continue tmp_set.add(self.word_list[i]) self.edge_dict[word] = tmp_set #根据边的相连关系,构建矩阵 def createMatrix(self): self.matrix = np.zeros([len(set(self.word_list)), len(set(self.word_list))]) self.word_index = {}#记录词的index self.index_dict = {}#记录节点index对应的词 for i, v in enumerate(set(self.word_list)): self.word_index[v] = i self.index_dict[i] = v for key in self.edge_dict.keys(): for w in self.edge_dict[key]: self.matrix[self.word_index[key]][self.word_index[w]] = 1 self.matrix[self.word_index[w]][self.word_index[key]] = 1 #归一化 for j in range(self.matrix.shape[1]): sum = 0 for i in range(self.matrix.shape[0]): sum += self.matrix[i][j] for i in range(self.matrix.shape[0]): self.matrix[i][j] /= sum #根据textrank公式计算权重 def calPR(self): self.PR = np.ones([len(set(self.word_list)), 1]) for i in range(self.iternum): self.PR = (1 - self.alpha) + self.alpha * np.dot(self.matrix, self.PR) #输出词和相应的权重 def printResult(self): word_pr = {} for i in range(len(self.PR)): word_pr[self.index_dict[i]] = self.PR[i][0] res = sorted(word_pr.items(), key = lambda x : x[1], reverse=True) print(res) if __name__ == '__main__': s = '程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。' tr = TextRank(s, 3, 0.85, 700) tr.cutSentence() tr.createNodes() tr.createMatrix() tr.calPR() tr.printResult()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了python提取内容关键词的方法。分享给大家供大家参考。具体分析如下:一个非常高效的提取内容关键词的python代码,这段代码只能用于英文文章内容
网站优化如何做长尾关键词,你意想不到的方法。 一、布局goog网页关键词 1、价值词提取 什么是价值词,它就是从长尾关键词里提取出来的,是根据bai度
网站优化如何做长尾关键词,你意想不到的方法。一、布局goog网页关键词1、价值词提取什么是价值词,它就是从长尾关键词里提取出来的,是根据bai度分词Z组后得到的
提取淘宝直通车的优质关键词对于推广很重要,因为只有精准推广关键词了,才能帮助网店引来更多有效的流量,提升转化率,为卖家赚更多的银子,关于关键词提取的方法有很多,
浅析关键词排名刷点击流量要实现关键词内页排名!关键词排名刷点击流量优化如何实现关键词内页排名,关键词内页排名通俗一点就是长尾关键词排名。如果我们研究关键词排名刷