时间:2021-05-22
由于Keras是一种建立在已有深度学习框架上的二次框架,其使用起来非常方便,其后端实现有两种方法,theano和tensorflow。由于自己平时用tensorflow,所以选择后端用tensorflow的Keras,代码写起来更加方便。
1、建立模型
Keras分为两种不同的建模方式,
Sequential models:这种方法用于实现一些简单的模型。你只需要向一些存在的模型中添加层就行了。
Functional API:Keras的API是非常强大的,你可以利用这些API来构造更加复杂的模型,比如多输出模型,有向无环图等等。
这里采用sequential models方法。
构建序列模型。
def define_model(): model = Sequential() # setup first conv layer model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(120, 120, 3), padding='same')) # [10, 120, 120, 32] # setup first maxpooling layer model.add(MaxPooling2D(pool_size=(2, 2))) # [10, 60, 60, 32] # setup second conv layer model.add(Conv2D(8, kernel_size=(3, 3), activation="relu", padding='same')) # [10, 60, 60, 8] # setup second maxpooling layer model.add(MaxPooling2D(pool_size=(3, 3))) # [10, 20, 20, 8] # add bianping layer, 3200 = 20 * 20 * 8 model.add(Flatten()) # [10, 3200] # add first full connection layer model.add(Dense(512, activation='sigmoid')) # [10, 512] # add dropout layer model.add(Dropout(0.5)) # add second full connection layer model.add(Dense(4, activation='softmax')) # [10, 4] return model可以看到定义模型时输出的网络结构。
2、准备数据
def load_data(resultpath): datapath = os.path.join(resultpath, "data10_4.npz") if os.path.exists(datapath): data = np.load(datapath) X, Y = data["X"], data["Y"] else: X = np.array(np.arange(432000)).reshape(10, 120, 120, 3) Y = [0, 0, 1, 1, 2, 2, 3, 3, 2, 0] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) np.savez(datapath, X=X, Y=Y) print('Saved dataset to dataset.npz.') print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape)) return X, Y3、训练模型
def train_model(resultpath): model = define_model() # if want to use SGD, first define sgd, then set optimizer=sgd sgd = SGD(lr=0.001, decay=1e-6, momentum=0, nesterov=True) # select loss\optimizer\ model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) model.summary() # draw the model structure plot_model(model, show_shapes=True, to_file=os.path.join(resultpath, 'model.png')) # load data X, Y = load_data(resultpath) # split train and test data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=2) # input data to model and train history = model.fit(X_train, Y_train, batch_size=2, epochs=10, validation_data=(X_test, Y_test), verbose=1, shuffle=True) # evaluate the model loss, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', loss) print('Test accuracy:', acc)可以看到训练时输出的日志。因为是随机数据,没有意义,这里训练的结果不必计较,只是练习而已。
保存下来的模型结构:
4、保存与加载模型并测试
有两种保存方式
4.1 直接保存模型h5
保存:
def my_save_model(resultpath): model = train_model(resultpath) # the first way to save model model.save(os.path.join(resultpath, 'my_model.h5'))加载:
def my_load_model(resultpath): # test data X = np.array(np.arange(86400)).reshape(2, 120, 120, 3) Y = [0, 1] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) # the first way of load model model2 = load_model(os.path.join(resultpath, 'my_model.h5')) model2.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model2.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model2.predict_classes(X) print("predicct is: ", y)4.2 分别保存网络结构和权重
保存:
def my_save_model(resultpath): model = train_model(resultpath) # the secon way : save trained network structure and weights model_json = model.to_json() open(os.path.join(resultpath, 'my_model_structure.json'), 'w').write(model_json) model.save_weights(os.path.join(resultpath, 'my_model_weights.hd5'))加载:
def my_load_model(resultpath): # test data X = np.array(np.arange(86400)).reshape(2, 120, 120, 3) Y = [0, 1] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) # the second way : load model structure and weights model = model_from_json(open(os.path.join(resultpath, 'my_model_structure.json')).read()) model.load_weights(os.path.join(resultpath, 'my_model_weights.hd5')) model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model.predict_classes(X) print("predicct is: ", y)可以看到,两次的结果是一样的。
5、完整代码
from keras.models import Sequentialfrom keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropoutfrom keras.losses import categorical_crossentropyfrom keras.optimizers import Adamfrom keras.utils.vis_utils import plot_modelfrom keras.optimizers import SGDfrom keras.models import model_from_jsonfrom keras.models import load_modelfrom keras.utils import np_utilsimport numpy as npimport osfrom sklearn.model_selection import train_test_splitdef load_data(resultpath): datapath = os.path.join(resultpath, "data10_4.npz") if os.path.exists(datapath): data = np.load(datapath) X, Y = data["X"], data["Y"] else: X = np.array(np.arange(432000)).reshape(10, 120, 120, 3) Y = [0, 0, 1, 1, 2, 2, 3, 3, 2, 0] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) np.savez(datapath, X=X, Y=Y) print('Saved dataset to dataset.npz.') print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape)) return X, Ydef define_model(): model = Sequential() # setup first conv layer model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(120, 120, 3), padding='same')) # [10, 120, 120, 32] # setup first maxpooling layer model.add(MaxPooling2D(pool_size=(2, 2))) # [10, 60, 60, 32] # setup second conv layer model.add(Conv2D(8, kernel_size=(3, 3), activation="relu", padding='same')) # [10, 60, 60, 8] # setup second maxpooling layer model.add(MaxPooling2D(pool_size=(3, 3))) # [10, 20, 20, 8] # add bianping layer, 3200 = 20 * 20 * 8 model.add(Flatten()) # [10, 3200] # add first full connection layer model.add(Dense(512, activation='sigmoid')) # [10, 512] # add dropout layer model.add(Dropout(0.5)) # add second full connection layer model.add(Dense(4, activation='softmax')) # [10, 4] return modeldef train_model(resultpath): model = define_model() # if want to use SGD, first define sgd, then set optimizer=sgd sgd = SGD(lr=0.001, decay=1e-6, momentum=0, nesterov=True) # select loss\optimizer\ model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) model.summary() # draw the model structure plot_model(model, show_shapes=True, to_file=os.path.join(resultpath, 'model.png')) # load data X, Y = load_data(resultpath) # split train and test data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=2) # input data to model and train history = model.fit(X_train, Y_train, batch_size=2, epochs=10, validation_data=(X_test, Y_test), verbose=1, shuffle=True) # evaluate the model loss, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', loss) print('Test accuracy:', acc) return modeldef my_save_model(resultpath): model = train_model(resultpath) # the first way to save model model.save(os.path.join(resultpath, 'my_model.h5')) # the secon way : save trained network structure and weights model_json = model.to_json() open(os.path.join(resultpath, 'my_model_structure.json'), 'w').write(model_json) model.save_weights(os.path.join(resultpath, 'my_model_weights.hd5'))def my_load_model(resultpath): # test data X = np.array(np.arange(86400)).reshape(2, 120, 120, 3) Y = [0, 1] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) # the first way of load model model2 = load_model(os.path.join(resultpath, 'my_model.h5')) model2.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model2.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model2.predict_classes(X) print("predicct is: ", y) # the second way : load model structure and weights model = model_from_json(open(os.path.join(resultpath, 'my_model_structure.json')).read()) model.load_weights(os.path.join(resultpath, 'my_model_weights.hd5')) model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model.predict_classes(X) print("predicct is: ", y)def main(): resultpath = "result" #train_model(resultpath) #my_save_model(resultpath) my_load_model(resultpath)if __name__ == "__main__": main()以上这篇使用Keras建立模型并训练等一系列操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
问题keras使用预训练模型vgg16分类,损失和准确度不变。细节:使用keras训练一个两类数据,正负比例1:3,在vgg16后添加了几个全链接并初始化了。并
对于使用已经训练好的模型,比如VGG,RESNET等,keras都自带了一个keras.applications.imagenet_utils.decode_p
在用Keras来实现CNN等一系列网络时,我们经常用ReLU作为激活函数,一般写法如下:fromkerasimportlayersfromkerasimport
GitPython是一个用于操作Git版本库的python包,它提供了一系列的对象模型(库-Repo、树-Tree、提交-Commit等),用于操作版本库中的相
keras模块里面为我们提供了一个预训练好的模型,也就是开箱即可使用的图像识别模型趁着国庆假期有时间我们就来看看这个预训练模型如何使用吧可用的模型有哪些?根据官