使用Numpy对特征中的异常值进行替换及条件替换方式

时间:2021-05-22

原始数据为Excel文件,由传感器获得,通过Pyhton xlrd模块读入,读入后为数组形式,由于其存在部分异常值和缺失值,所以便利用Numpy对其中的异常值进行替换或条件替换。

1. 将'nan'替换为给定值

import numpy as np data = np.array([['nan', 1, 2, 3, 4], # 数据类型为字符串型 [10, 15, 20, 25, 'nan'], ['nan', 5, 8, 10, 20]])print(data)# [['nan' '1' '2' '3' '4']# ['10' '15' '20' '25' 'nan']# ['nan' '5' '8' '10' '20']] data[data == 'nan'] = 100 # 将numpy中为'nan'的项替换为 100print(data)# [['100' '1' '2' '3' '4']# ['10' '15' '20' '25' '100']# ['100' '5' '8' '10' '20']] data = data.astype(float) # 将数据由字符型转换为浮点型print(data)# [[100. 1. 2. 3. 4.]# [ 10. 15. 20. 25. 100.]# [100. 5. 8. 10. 20.]]

2. 按列进行条件替换

当利用'3σ准则'或者箱型图进行异常值判断时,通常需要对 > upper 或 < lower的值进行处理,这时就需要按列进行条件替换了。

print(data)# [[100. 1. 2. 3. 4.]# [ 10. 15. 20. 25. 100.]# [100. 5. 8. 10. 20.]] data[:, 1][data[:, 1] < 5] = 5 # 对第2列小于 5 的替换为5print(data)# [[100. 5. 2. 3. 4.]# [ 10. 15. 20. 25. 100.]# [100. 5. 8. 10. 20.]] data[:, 2][data[:, 2] > 15] = 10 # 对第3列大于 15 的替换为10print(data)# [[100. 5. 2. 3. 4.]# [ 10. 15. 10. 25. 100.]# [100. 5. 8. 10. 20.]]

补充知识:Python之dataframe修改异常值—按行判断值是否大于平均值的指定倍数,如果是则用均值替换

如下所示:

import pandas as pddata = {'hah':[1,2,9], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)dfimport numpy as npdef panduan(x): x_mean = np.mean(x) print(x_mean) for i in x.index: if x[i] > x_mean*2: x[i] = x_mean# print(i) return xdf = df.apply(lambda x:panduan(x),axis=1)

以上这篇使用Numpy对特征中的异常值进行替换及条件替换方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章