Pandas之Dropna滤除缺失数据的实现方法

时间:2021-05-22

约定:

import pandas as pdimport numpy as npfrom numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])print(se1)se1.dropna()

代码结果:

0 4.0
1 NaN
2 8.0
3 NaN
4 5.0
dtype: float64

0 4.0
2 8.0
4 5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0 4.0
2 8.0
4 5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])df1

代码结果:

0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2 0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaNdf1

代码结果:

0 1 2 3 0 1.0 2.0 3.0 NaN 1 NaN NaN 2.0 NaN 2 NaN NaN NaN NaN 3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)df1.dropna(thresh=3)

代码结果:

0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章