时间:2021-05-22
我们在做诸如人群密集度等可视化的时候,可能会考虑使用热力图,在Python中能很方便地绘制热力图。
下面以识别图片中的行人,并绘制热力图为例进行讲解。
需要import的包:
import cv2import numpy as npfrom PIL import Imagefrom pyheatmap.heatmap import HeatMapimport matplotlib.pyplot as plt根据识别的结果得到data的值,传入以下apply_heatmap(image,data)绘制热力图;
def apply_heatmap(image,data): '''image是原图,data是坐标''' '''创建一个新的与原图大小一致的图像,color为0背景为黑色。这里这样做是因为在绘制热力图的时候如果不选择背景图,画出来的图与原图大小不一致(根据点的坐标来的),导致无法对热力图和原图进行加权叠加,因此,这里我新建了一张背景图。''' background = Image.new("RGB", (image.shape[1], image.shape[0]), color=0) # 开始绘制热度图 hm = HeatMap(data) hit_img = hm.heatmap(base=background, r = 100) # background为背景图片,r是半径,默认为10 # ~ plt.figure() # ~ plt.imshow(hit_img) # ~ plt.show() #hit_img.save('out_' + image_name + '.jpeg') hit_img = cv2.cvtColor(np.asarray(hit_img),cv2.COLOR_RGB2BGR)#Image格式转换成cv2格式 overlay = image.copy() alpha = 0.5 # 设置覆盖图片的透明度 cv2.rectangle(overlay, (0, 0), (image.shape[1], image.shape[0]), (255, 0, 0), -1) # 设置蓝色为热度图基本色蓝色 image = cv2.addWeighted(overlay, alpha, image, 1-alpha, 0) # 将背景热度图覆盖到原图 image = cv2.addWeighted(hit_img, alpha, image, 1-alpha, 0) # 将热度图覆盖到原图网站上随意找一张图片进行实验:
原图如下:
结果如下:
可视化效果可以调节,如:通过调节hm.heatmap(base=background, r = 100)中的r即可调节热力点的半径大小。
以上就是python 绘制场景热力图的示例的详细内容,更多关于python 绘制热力图的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了python绘制热力图的具体代码,供大家参考,具体内容如下python的热力图是用皮尔逊相关系数来查看两者之间的关联性。#encoding:
利用pythonpyheatmap包绘制热力图,供大家参考,具体内容如下importmatplotlib.pyplotaspltfrompyheatmap.he
自从统计工具中有了热力图之后笔者几乎是每天必看的,因为热力图片对于研究用户需求和改进网站太重要了,所以笔者在这里建议大家都需要每天看自己网站的热力图。不过我发现
本文以2019年全国各城市的空气质量观测数据为例,利用matplotlib、calmap、pyecharts绘制日历图和热力图。在绘图之前先利用pandas对空
今天开淘小编主要跟大家分享京东商智商家版流量板块的热力图,那么这个板块主要是关于页面质量的多维度分析,帮助您在店铺装修和京东运营方面去进行提升,难么热力图呢