时间:2021-05-22
线性回归是机器学习中的基础算法之一,属于监督学习中的回归问题,算法的关键在于如何最小化代价函数,通常使用梯度下降或者正规方程(最小二乘法),在这里对算法原理不过多赘述,建议看吴恩达发布在斯坦福大学上的课程进行入门学习。
这里主要使用python的sklearn实现一个简单的单变量线性回归。
sklearn对机器学习方法封装的十分好,基本使用fit,predict,score,来训练,预测,评价模型,
一个简单的事例如下:
from pandas import DataFramefrom pandas import DataFrameimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn import datasets,linear_model X=[]Y=[]with open("C:\\Users\\www\\ex1data1.txt","r") as f: #读取txt文件。 for line in f: p_tmp, E_tmp = [float(i) for i in line.split(',')] X.append(p_tmp) Y.append(E_tmp) #'data=np.loadtxt('ex1data1.txt',delimiter=',')# X=data[0]# Y=data[1] data=DataFrame(X,columns={'a'})data['b']=bX=DataFrame(X) fig = plt.figure() ax1 = fig.add_subplot(1,1,1)plt.scatter(data['a'],data['b']) #显示X,Y的散点图 def linear_model_main(X,Y,predict_value): #定义一个使用线性回归的函数 regr=linear_model.LinearRegression() regr.fit(X,Y) #训练模型 predict_output=regr.predict(predict_value) #预测 predictions={} #用一个集合装以下元素 predictions['intercept']=regr.intercept_ #截距 predictions['codfficient']=regr.coef_ #斜率(参数) predictions['predict_value']=predict_output #预测值 return predictions result = linear_model_main(X,Y,1500) #调用函数print(result['predict_value']) def show_predict(X,Y): regr=linear_model.LinearRegression() regr.fit(X,Y) plt.scatter(X,Y,color='blue') plt.plot(X,regr.predict(X),color='red') show_predict(X,Y)最后拟合结果如图:
以上这篇python实现简单的单变量线性回归方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python实现的简单线性回归算法。分享给大家供大家参考,具体如下:用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的wom
本文实例讲述了Python实现的线性回归算法。分享给大家供大家参考,具体如下:用python实现线性回归UsingPythontoImplementLineRe
一、线性回归的理论1)线性回归的基本概念线性回归是一种有监督的学习算法,它介绍的自变量的和因变量的之间的线性的相关关系,分为一元线性回归和多元的线性回归。一元线
前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的knn,k-近邻算法(kNN,k-NearestNeigh
在统计学中,线性回归(LinearRegression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。简单对来说