时间:2021-05-22
线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。
线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。
y = a + bx
从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:
第一部分:获取数据:
from matplotlib import style from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import quandl import datetime style.use('ggplot') #Dates start_date = datetime.date(2017,1,3) t_date=start_date, end_date=end_date, collapse="daily") df = df.reset_index() prices = np.reshape(prices, (len(prices), 1))第二部分:创建一个回归对象:
', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression plt.title('Linear Regression | Time vs. Price') plt.legend() predicted_price =regressor.predict(date)输出:
预测日期输入价格:
创建训练/测试集
et xtrain, x , ytrain) #Train plt.title('Linear Regression | Time vs. Price') #Test Set Graph plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting plt.show()输出:
测试集:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在这里我们要使用AndroidListView来实现显示股票行情,效果图如下,红色表示股票价格上涨,绿色表示股票价格下跌。第一步、定义color.xml如下:复
本文实例讲述了Python实现的线性回归算法。分享给大家供大家参考,具体如下:用python实现线性回归UsingPythontoImplementLineRe
本文实例讲述了Python实现的简单线性回归算法。分享给大家供大家参考,具体如下:用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的wom
线性逻辑回归本文用代码实现怎么利用sklearn来进行线性逻辑回归的计算,下面先来看看用到的数据。这是有两行特征的数据,然后第三行是数据的标签。python代码
4.1表单数据概述 如果你曾经使用过Web搜索引擎,或者浏览过在线书店、股票价格、机票信息,或许会留意到一些古怪的URL,比如“http://host/pat